f. sp. () is a globally important fungal wheat pathogen. Some wheat genotypes contain powdery mildew resistance () genes encoding immune receptors that recognize specific fungal-secreted effector proteins, defined as avirulence (Avr) factors. Identifying Avr factors is vital for understanding the mechanisms, functioning, and durability of wheat resistance. Here, we present AvrXpose, an approach to identify genes in by generating gain-of-virulence mutants on genes. We first identified six mutants with gain of virulence on and They all had point mutations, deletions or insertions of transposable elements within the corresponding gene or its promoter region. We further selected six mutants on , aiming to identify the yet unknown AvrPm3 recognized by Pm3a, in addition to the previously described AvrPm3. Surprisingly, virulence in the obtained mutants was always accompanied by an additional gain of virulence on the unrelated tandem kinase resistance gene No virulence toward 11 additional genes tested was observed, indicating that the gain of virulence was specific for and . Several independently obtained mutants have mutations in , a gene encoding a putative, nonsecreted ankyrin repeat-containing protein. Gene expression analysis suggests that regulates a subset of effector genes. We conclude that is a common factor required for avirulence on both a specific nucleotide-binding leucine-rich repeat and a WTK immune receptor. Our findings suggest that, beyond effectors, another type of pathogen protein can control the race-specific interaction between powdery mildew and wheat. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.

Download full-text PDF

Source
http://dx.doi.org/10.1094/MPMI-09-23-0136-FIDOI Listing

Publication Analysis

Top Keywords

powdery mildew
12
gain virulence
12
avr factors
8
gene
5
genes
5
mutants
5
virulence
5
mutagenesis wheat
4
wheat powdery
4
mildew reveals
4

Similar Publications

Effect of AM fungi on the growth and powdery mildew development of Astragalus sinicus L. under water stress.

Plant Physiol Biochem

December 2024

Key Laboratory of Herbage Improvement and Grassland Agroecosystems, Lanzhou University, Lanzhou, 730020, China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, 730020, China; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China; Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Centre of Western China Grassland Industry, China. Electronic address:

Arbuscular mycorrhizal (AM) fungi are widely existing soil microorganisms that form symbiotic relationships with most terrestrial plants. They are important for enhancing adversity resistance, including resistance to disease and water stresses. Nevertheless, it is not clear whether the benefits can be maintained in regulating the occurrence of plant diseases under drought, flooding stress and during water restoration.

View Article and Find Full Text PDF

Positive regulation of a LuxR family protein, MilO, in mildiomycin biosynthesis.

Appl Environ Microbiol

December 2024

State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China.

Mildiomycin is a representative peptidyl nucleoside antibiotic and was first isolated from , which has been used as an important biological agent to control powdery mildew in plants. Despite its importance, the biosynthetic pathways and regulatory mechanisms remain to be fully elucidated. In this study, we identified MilO as a positive pathway-specific regulator of mildiomycin biosynthesis in the heterologous host .

View Article and Find Full Text PDF

Background: Poa pratensis is a predominant cool-season turfgrass utilized in urban landscaping and ecological management. It is extensively employed in turf construction and in the regulation of ecological environments. However, it is susceptible to powdery mildew, a prevalent disease in humid regions.

View Article and Find Full Text PDF

Potential use of Apis mellifera L. honey in the management of the cucurbit powdery mildew caused by Podosphaera xanthii (Castagne) under greenhouse conditions.

Rev Argent Microbiol

December 2024

Facultad de Agronomía, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, Mexico; Universidad Autónoma de Occidente, Unidad Regional Culiacán, Culiacán, Sinaloa, Mexico. Electronic address:

Powdery mildew by Podosphaera xanthii (Castagne) is a major disease of greenhouse cucurbitaceous crops worldwide. Honey by honeybees has been reported as an antimicrobial for diseases in humans, animals, and plants. The aim of this study was to assess Apis mellifera honey against P.

View Article and Find Full Text PDF

Powdery mildew (PM), caused by the biotrophic fungus Podospharea leucotricha, is a major threat to apple production. Plant-plant communication (PPC) is a crucial strategy for plant communities to enhance their defence against pathogens. The interconversion of methyl salicylate (MeSA) and salicylic acid (SA) is critical for PPC regulation, but the mechanism of MeSA-mediated PPC is not fully understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!