The overview describes the synergy between biological sciences and cellular structures processed by additive manufacturing to elucidate the significance of cellular structured implants in eliminating stress shielding and in meeting the bio-mechanical property requirements of elastic modulus, impact resistance, and fatigue strength in conjunction with the biological functionality. The convergence of additive manufacturing, computer-aided design, and structure-property relationships is envisaged to provide the solution to the current day challenges in the biomedical arena. The traditional methods of fabrication of biomedical devices including casting and mechanical forming have limitations because of the mismatch in micro/microstructure, mechanical, and physical properties with the host site. Additive manufacturing of cellular structured alloys electron beam melting and laser powder bed fusion has benefits of fabricating patient-specific design that is obtained from the computed tomography scan of the defect site. The discussion in the overview consists of two aspects - the first one describes the underlying reason that motivated 3D printing of implants from the perspective of minimising stress shielding together with the mechanical property requirements, where the mechanical properties of cellular structured implants depend on the cellular architecture and percentage cellular porosity. The second aspect focuses on the biological response of cellular structured devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/21691401.2023.2278156 | DOI Listing |
ACS Nano
January 2025
Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, P. R. China.
Knowledge of localized strain at the micrometer scale is essential for tailoring the electrical and mechanical properties of ongoing thinning of crystal silicon (c-Si) solar cells. Thinning c-Si wafers below 110 m are susceptible to cracking in manufacturing due to the nonuniform stress distribution at a micrometer region, necessitating a rigorous technique to reveal the localized stress distribution correlating with its device electrical output. In this context, a Raman microscopy integrated with a photovoltage mapping setup with high resolution to the submicrometer scale is developed to acquire correlative Raman-voltage of the localized physical properties at the microcracks on the rear side of c-Si solar cells.
View Article and Find Full Text PDFASN Neuro
January 2025
Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA.
In light of the increasing importance for measuring myelin ratios - the ratio of axon-to-fiber (axon + myelin) diameters in myelin internodes - to understand normal physiology, disease states, repair mechanisms and myelin plasticity, there is urgent need to minimize processing and statistical artifacts in current methodologies. Many contemporary studies fall prey to a variety of artifacts, reducing study outcome robustness and slowing development of novel therapeutics. Underlying causes stem from a lack of understanding of the myelin ratio, which has persisted more than a century.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Function-to-find domain (FIIND)-containing proteins, including NLRP1 and CARD8, are vital components of the inflammasome signaling pathway, critical for the innate immune response. These proteins exist in various forms due to autoproteolysis within the FIIND domain, resulting in full-length (FL), cleaved N-terminal (NT), and cleaved C-terminal (CT) peptides, which form autoinhibitory complexes in the steady state. However, the detailed mechanism remains elusive.
View Article and Find Full Text PDFPLoS One
January 2025
Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh.
The cation-proton antiporter (CPA) superfamily plays pivotal roles in regulating cellular ion and pH homeostasis in plants. To date, the regulatory functions of CPA family members in rice (Oryza sativa L.) have not been elucidated.
View Article and Find Full Text PDFSci Immunol
January 2025
Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA.
Understanding the naïve B cell repertoire and its specificity for potential zoonotic threats, such as the highly pathogenic avian influenza (HPAI) H5Nx viruses, may allow prediction of infection- or vaccine-specific responses. However, this naïve repertoire and the possibility to respond to emerging, prepandemic viruses are largely undetermined. Here, we profiled naïve B cell reactivity against a prototypical HPAI H5 hemagglutinin (HA), the major target of antibody responses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!