Objective: This study investigates the effects of tracheal stenosis on distal airway pressure during low-frequency jet ventilation (LFJV) in tracheal stenosis resection procedures, focusing on variables like stenosis size, depth, scope type, and inlet pressure.

Methods: A 3D-printed human airway model was employed, featuring inserted tracheal stenoses of varied sizes and depths. Distal airway pressure was measured with 16 pressure transducers, and data were processed via MATLAB. The study varied stenosis size, depth, scope type, and inlet pressure during five sequential jet bursts under LFJV.

Results: Using a subglottiscope resulted in significantly reduced distal airway pressure compared to a laryngoscope. Interestingly, neither stenosis size nor depth significantly influenced distal airway pressure. However, increased distance between the scope and stenosis raised normalized pressure. A linear rise in normalized distal airway pressure was noted with increased inlet pressure, regardless of stenosis dimensions.

Conclusion: In this model, scope type and inlet pressure were noted to be significant determinants of distal airway pressure, while stenosis size and depth were not. The distance between the scope and the stenosis did influence distal pressures. These findings may have clinical implications for managing airway pressures in patients undergoing LFJV, potentially reducing the risk of ventilator-induced lung injury.

Level Of Evidence: NA (Basic Research) Laryngoscope, 134:2300-2305, 2024.

Download full-text PDF

Source
http://dx.doi.org/10.1002/lary.31150DOI Listing

Publication Analysis

Top Keywords

distal airway
28
airway pressure
28
stenosis size
16
size depth
16
tracheal stenosis
12
pressure
12
scope type
12
type inlet
12
inlet pressure
12
stenosis
10

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!