Stereoisomers of cyclo(Gly-Pro-Phe-Ala-Asn-Ala-Val-Ser) were synthesized. NMR studies of their solution conformations, focusing on peptide N-H solvent exposure, were made. These indicated that a single proline residue in the cyclic octapeptide ring is insufficient constraint to stabilize the backbone conformations that were previously established for cyclo(Gly-Pro-Phe-Ala)2.

Download full-text PDF

Source

Publication Analysis

Top Keywords

conformations cyclic
4
cyclic octapeptides
4
octapeptides diastereomers
4
diastereomers cyclogly-pro-phe-ala-asn-ala-val-ser
4
cyclogly-pro-phe-ala-asn-ala-val-ser stereoisomers
4
stereoisomers cyclogly-pro-phe-ala-asn-ala-val-ser
4
cyclogly-pro-phe-ala-asn-ala-val-ser synthesized
4
synthesized nmr
4
nmr studies
4
studies solution
4

Similar Publications

-β, β-β' trifused porphyrins incorporating two distinct active methylene groups (MN = malononitrile and IND = 1,3-indanedione) and their corresponding metal complexes with Cu(II) and Zn(II) have been synthesized with good to excellent yields and characterized by various spectroscopic techniques and spectrometric methods. Single crystal X-ray analysis of the Zn(II) complex ZnTFPMB(MN) (where TFP = trifused porphyrin and MB = mono benzo) revealed a nonplanar 'armchair' type conformation with a twist angle of 24.10°.

View Article and Find Full Text PDF

A series of significantly bulky mono- and di-substituted cyclic alkyl-amino carbene (cAAC)- functionalized cyclopentadiene ring (Cp) compounds were synthesized. The functionalization of the Cp ring with cAAC ligands makes them significantly bulkier, while retaining their ligation properties. These compounds display interesting fluorescence properties.

View Article and Find Full Text PDF

Transport and action of sesame protein-derived ACE inhibitory peptides ITAPHW and IRPNGL.

Food Chem

January 2025

State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China.

Vascular endothelial dysfunction is an important pathogenic factor in hypertension, in which angiotensin-converting enzyme (ACE) plays an important role. Peptides that bind to ACE may attenuate vascular endothelial dysfunction by altering the structure of ACE. This study demonstrated that ITAPHW and IRPNGL were resistant to simulated gastrointestinal fluid and were transported across the Caco-2 monolayer via the intercellular space, with ITAPHW showing a high apparent permeability coefficient of (1.

View Article and Find Full Text PDF

Synthesis and Chemical Structure of the Cyclic Heptapeptide Stylissamide H.

J Nat Prod

January 2025

Department of Chemistry and Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan.

We investigated the chemical structures and conformational isomers of the cyclic heptapeptides stylissamide H and euryjanicin A isolated from marine sources. Despite sharing the same molecular structure, stylissamide H and euryjanicin A exhibit different conformational isomers in solution and solid states. The main difference arises from the configurations of the two Pro residues.

View Article and Find Full Text PDF

The development of efficient immobilization support for the enhancement of enzyme activity and recyclability is a highly desirable objective. Single-crystalline ordered macro-microporous ZIF-8 (SOM-ZIF-8), has emerged as a highly effective matrix for enzyme immobilization, however, the inherent hydrophobic nature limits its further advancement. Herein, we have customized the immobilization of the Pseudomonas cepacia lipase (LP) in the modification-channels of SOM-ZIF-8 by functionalizing the inner surface-properties with polyethylene glycol (PEG) (LP@SOM-ZIF-8-PEG), and significant enhancement of the activity and (thermal, solvent and cyclic) stability can be realized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!