Tillering, also known as shoot branching, is a fundamental trait for cereal crops such as rice to produce sufficient panicle numbers. Effective tillering that guarantees successful panicle production is essential for achieving high crop yields. Recent advances in molecular biology have revealed the mechanisms underlying rice tillering; however, in rice breeding and cultivation, there remain limited genes or alleles suitable for effective tillering and high yields. A recently identified quantitative trait locus (QTL) called MORE PANICLES 3 (MP3) has been cloned as a single gene and shown to promote tillering and to moderately increase panicle number. This gene is an ortholog of the maize domestication gene TB1, and it has the potential to increase grain yield under ongoing climate change and in nutrient-poor environments. This review reconsiders the potential and importance of tillering for sustainable food production. Thus, I provide an overview of rice tiller development and the currently understood molecular mechanisms that underly it, focusing primarily on the biosynthesis and signaling of strigolactones, effective QTLs, and the importance of MP3 (TB1). The possible future benefits in using promising QTLs such as MP3 to explore agronomic solutions under ongoing climate change and in nutrient-poor environments are also highlighted.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10837021 | PMC |
http://dx.doi.org/10.1093/jxb/erad422 | DOI Listing |
Recent Adv Food Nutr Agric
January 2025
Environmental Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand.
Introduction: Saltwater intrusion poses a serious risk to global food security. As a soil amendment, biochar mitigates the negative effects of saltwater intrusion in rice, yet the beneficial effects on agricultural productivity with different exposure times and salt concentrations have not been fully examined.
Methods: A pot experiment was conducted to investigate the effects of 30% (w/w) rice husk biochar on the growth, ion accumulation, and yield of the Phitsanulok 2 rice cultivar under salt stress due to saltwater intrusion.
Plants (Basel)
December 2024
Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China.
The Aux/IAA family proteins, key components of the auxin signaling pathway, are plant-specific transcription factors with important roles in regulating a wide range of plant growth and developmental events. The family genes have been extensively studied in Arabidopsis. However, most of the family genes in rice have not been functionally studied.
View Article and Find Full Text PDFLife (Basel)
December 2024
Biodiversity Management Research Group (GESBIO-UCO), Rabanales Campus, University of Córdoba, National Highway IV km 396, 14014 Córdoba, Spain.
Rice ( L.) is a crucial crop for employment and agricultural output and heavily reliant on family labor. This study evaluated the effects of nitrogen levels (80, 120, and 160 kg·ha) on weed incidence and key agronomic variables, including vegetative growth, yield, and related traits, in Ecuador's primary rice-growing regions, Guayas and Los Ríos.
View Article and Find Full Text PDFBiology (Basel)
December 2024
Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China.
As global food security issues become increasingly severe, an important innovation in agricultural production patterns, namely integrated rice-fish farming, has been widely implemented around the world, especially in Asia. To assess the impact of integrated rice-crayfish () farming (IRCF) on agricultural ecosystems, we used Illumina high-throughput 16S rRNA gene sequencing to analyze differences in diversity, composition, co-occurrence network, and assembly process of planktonic bacterial communities in paddy water between traditional rice farming (TRM) and IRCF. Environmental factors and planktonic bacterial communities were evaluated during the tillering, jointing, flowering, and grain-filling stages on August 24, September 5, September 24, and October 16, respectively.
View Article and Find Full Text PDFDev Cell
January 2025
The BioActives Lab, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; The Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia. Electronic address:
The phytohormone strigolactone (SL) regulates various developmental processes and plant adaptation to nutrient availability, which in turn regulates strigolactone biosynthesis. In the recent issue of Cell, Hu et al. advance the understanding of the interaction of the SL receptor complex and reveal exciting insights into the nitrogen-dependent regulation of SL signaling and SL-dependent tillering in rice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!