Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Using a machine learning (ML) approach to fit DFT data, interatomic potentials have been successfully extracted. In this study, the phase transition, mechanical behavior and lattice thermal conductivity are investigated for halogen perovskites using NEP-based MD simulations in a large supercell including 16 000 atoms, which breaks through the size and temperature effects in DFT. A clear phase transition from orthorhombic (γ) → tetragonal (β) → cubic (α) is observed during the heating process. During the cooling process, CsPbCl and CsPbBr exhibit perfect reversible behavior, while CsPbI only undergoes a phase transition from α to β. Then, the key mechanical parameters, including Poisson's ratio, tensile strength, critical strain and bulk modulus, are predicted. The thermal conductivity is also investigated using the NEP-based MD simulations. At room temperature, they exhibit extremely low thermal conductivity. The predicted results are compared with the experimental results, and the rationality of ML potentials has been confirmed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3cp04657e | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!