Objective: Several clinical studies have explored the feasibility and efficacy of radiosurgical treatment for mesial temporal lobe epilepsy, but the long-term safety of this treatment has not been fully characterized. This study aims to report and describe radiation-induced cavernous malformation as a delayed complication of radiosurgery in epilepsy patients.

Methods: The series includes 20 patients with mesial temporal lobe epilepsy who underwent Gamma Knife radiosurgery (GKRS). The majority received a prescribed isodose of 24 Gy as an adjuvant treatment after anterior temporal lobectomy.

Results: In this series, we identified radiation-induced cavernous malformation in three patients, resulting in a cumulative incidence of 18.4% (95% confidence interval, 6.3% to 47.0%) at an 8-year follow-up. These late sequelae of vascular malformation occurred between 6.9 and 7.6 years after GKRS, manifesting later than other delayed radiation-induced changes, such as radiation necrosis. Neurological symptoms attributed to intracranial hypertension were present in those three cases involving cavernous malformation. Of these, two cases, which initially exhibited an insufficient response to radiosurgery, ultimately demonstrated seizure remission following the successful microsurgical resection of the cavernous malformation.

Conclusion: All things considered, the development of radiation-induced cavernous malformation is not uncommon in this population and should be acknowledged as a potential long-term complication. Microsurgical resection of cavernous malformation can be preferentially considered in cases where the initial seizure outcome after GKRS is unsatisfactory.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11220412PMC
http://dx.doi.org/10.3340/jkns.2023.0203DOI Listing

Publication Analysis

Top Keywords

cavernous malformation
20
radiation-induced cavernous
16
mesial temporal
12
temporal lobe
12
lobe epilepsy
12
gamma knife
8
knife radiosurgery
8
microsurgical resection
8
resection cavernous
8
cavernous
7

Similar Publications

Increases in mean lesional iron content by quantitative susceptibility mapping (QSM) by ≥6% and/or vascular permeability by dynamic contrast enhanced quantitative perfusion (DCEQP) by ≥40% on MRI have been associated with new symptomatic hemorrhage (SH) in cerebral cavernous malformations (CCMs). It is not known if plasma biomarkers can reflect these changes within the lesion proper. This cohort study enrolled 46 CCM patients with SH in the prior year.

View Article and Find Full Text PDF

To evaluate the incidence of mortality, hemorrhage, and neurological deficits in treating intracranial arteriovenous malformations (AVMs) in patients over 18 through a comparative analysis of surgical approaches and other therapeutic modalities. A systematic review was conducted using MEDLINE, Embase, CENTRAL, and LILACS databases in November 2023. Inclusion criteria included clinical trials, cohorts studies, case-controls studies, and case series comparing patients over 18 undergoing surgery or microsurgery versus other treatments (radiosurgery, isolated embolization, and conservative treatment).

View Article and Find Full Text PDF

Objective: To evaluate iron deposition patterns in patients with cerebral cavernous malformation-related epilepsy (CRE) using quantitative susceptibility mapping (QSM) for detailed analysis of iron distribution associated with a history of epilepsy and severity.

Methods: This study is part of the Quantitative Susceptibility Biomarker and Brain Structural Property for Cerebral Cavernous Malformation Related Epilepsy (CRESS) cohort, a prospective multicenter study. QSM was used to quantify iron deposition in patients with sporadic cerebral cavernous malformation (CCMs).

View Article and Find Full Text PDF

Endothelial-mesenchymal transition (EndMT) is defined as an important process of cellular differentiation by which endothelial cells (ECs) are prone to lose their characteristics and transform into mesenchymal cells. During EndMT, reduced expression of endothelial adhesion molecules disrupts intercellular adhesion, triggering cytoskeletal reorganization and mesenchymal transition. Numerous studies have proved that EndMT is a multifaceted biological event driven primarily by cytokines such as TGF-β, TNF-α, and IL-1β, alongside signaling pathways like WNT, Smad, MEK-ERK, and Notch.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!