Megasporogenesis, megagametogenesis and embryogenesis of Liparis elliptica (family Orchidaceae, tribe Malaxideae, subtribe Malaxidinae) have been studied. It was shown that the L. elliptica embryo sac is monosporic and develops from the chalazal cell of the megaspore triad according to the modified Polygonum type. The embryo sacs are reduced to four-six nuclei. The suspensor is unicellular, spherical in shape, originating from the basal cell (cb). A unique feature of L. elliptica is the unitegmal ovule, which distinguishes this species from other members of the tribe Malaxideae. The seed coat is formed by an outer layer of the single internal integument. Reduction of the outer integument is a rare feature for epiphytic orchid species with photosynthetic leaves.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00709-023-01906-x | DOI Listing |
Plant Biol (Stuttg)
January 2025
Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Diretoria de Pesquisa Científica, Rio de Janeiro, Brazil.
AoB Plants
July 2024
Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Rua Monteiro Lobato 255, 13083-862 Campinas, SP, Brazil.
n the Neotropics, the focus of apomictic studies predominantly centres on trees within the Brazilian savanna, characterized, mostly as sporophytic and facultative, associated with polyploidy and polyembryony. To enhance our understanding of the mechanisms governing apomixis and sexual reproduction in tropical herbaceous plants, we clarify the relationship between apomixis, chromosome counts, and polyembryony in the epiphytic orchid , which forms a polyploid complex within rocky outcrops in both the Brazilian savanna and the Atlantic forest. To define embryo origins and describe megasporogenesis and megagametogenesis, we performed manual self-pollinations in first-day flowers of cultivated plants, considering all three cytotypes (2, 3, 4) of this species.
View Article and Find Full Text PDFProtoplasma
July 2024
Cátedra de Botánica General, Depto. de Recursos Naturales y Ambiente, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina. Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina.
Ovule morphology, megasporogenesis, and megagametogenesis processes were examined in Hydrocleys nymphoides, Alisma plantago-aquatica, and Sagittaria montevidensis. Each of these species belongs to a different clade within the Alismataceae family. It is worth mentioning that the genus Hydrocleys previously belonged to the Limnocharitaceae family but is now classified within the Alismataceae.
View Article and Find Full Text PDFProtoplasma
May 2024
N.V. Tsitsin Main Botanical Garden of Russian Academy of Sciences, Botanicheskaya 4, 127276, Moscow, Russia.
Megasporogenesis, megagametogenesis and embryogenesis of Liparis elliptica (family Orchidaceae, tribe Malaxideae, subtribe Malaxidinae) have been studied. It was shown that the L. elliptica embryo sac is monosporic and develops from the chalazal cell of the megaspore triad according to the modified Polygonum type.
View Article and Find Full Text PDFPlant Reprod
March 2024
Laboratório de Anatomia Vegetal (LAVeg), Instituto de Biociências, Departamento de Botânica, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Porto Alegre, RS, Brazil.
In Araucaria angustifolia, the seed scale is part of the ovule, the female gametophyte presents a monosporic origin and arises from a coenocytic tetrad, and the pollen tube presents a single axis. The seed cone of conifers has many informative features, and its ontogenetic data may help interpret relationships among function, development patterns, and homology among seed plants. We reported the seed cone development, from pollination to pre-fertilization, including seed scale, ovule ontogeny, and pollen tube growth in Araucaria angustifolia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!