Crohn's disease (CD) is a chronic inflammatory bowel disease. An imbalanced microbiome (dysbiosis) can predispose to many diseases including CD. The role of oral dysbiosis in CD is poorly understood. We aimed to explore microbiome signature and dysbiosis of the salivary microbiome in CD patients, and correlate microbiota changes to the level of inflammation. Saliva samples were collected from healthy controls (HC) and CD patients (n = 40 per group). Salivary microbiome was analyzed by sequencing the entire 16S rRNA gene. Inflammatory biomarkers (C-reactive protein and calprotectin) were measured and correlated with microbiome diversity. Five dominant species were significantly enriched in CD, namely Veillonella dispar, Megasphaera stantonii, Prevotella jejuni, Dolosigranulum pigrum and Lactobacillus backii. Oral health had a significant impact on the microbiome since various significant features were cariogenic as Streptococcus mutans or periopathogenic such as Fusobacterium periodonticum. Furthermore, disease activity, duration and frequency of relapses impacted the oral microbiota. Treatment with monoclonal antibodies led to the emergence of a unique species called Simonsiella muelleri. Combining immunomodulatory agents with monoclonal antibodies significantly increased multiple pathogenic species such as Salmonella enterica, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa. Loss of diversity in CD was shown by multiple diversity indices. There was a significant negative correlation between gut inflammatory biomarkers (particularly calprotectin) and α-diversity, suggesting more inflammation associated with diversity loss in CD. Salivary dysbiosis was evident in CD patients, with unique microbiota signatures and perturbed species that can serve as disease biomarkers or potential targets for microbiota modulation. The interplay of various factors collectively contributed to dysbiosis, although each factor probably had a unique effect on the microbiome. The emergence of pathogenic bacteria in the oral cavity of CD patients is alarming since they can disturb gut homeostasis and induce inflammation by swallowing, or hematogenous spread of microbiota, their metabolites, or generated inflammatory mediators.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10628307 | PMC |
http://dx.doi.org/10.1038/s41598-023-46714-8 | DOI Listing |
PLoS One
December 2024
Pediatric Clinical Research Center "Invernizzi", Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy.
Background: Candidate Phyla Radiation (CPR) is a large monophyletic group encompassing about 25% of bacterial diversity. Among CPR, "Candidatus Saccharibacteria" is one of the most clinically relevant phyla. Indeed, it is enriched in the oral microbiota of subjects suffering from immune-mediated disorders and it has been found to have immunomodulatory activities.
View Article and Find Full Text PDFCureus
November 2024
Oral Medicine and Radiology, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND.
Salivaomics has emerged as a ground-breaking field in the detection and management of oral cancer (OC), offering a non-invasive, efficient, and patient-friendly alternative to traditional diagnostic methods. This innovative approach leverages the comprehensive molecular insights provided by genomics, transcriptomics, proteomics, metabolomics, and microbiomics. The potential of salivaomics lies in its ability to enable early detection, predict malignant transformation, and monitor treatment outcomes and disease recurrence.
View Article and Find Full Text PDFMicrobiol Immunol
December 2024
Department of Oral Microbiology and Immunology, Showa University Graduate School of Dentistry, Shinagawa-ku, Tokyo, Japan.
BMC Oral Health
December 2024
Cerrahpaşa Faculty of Medicine, Department of Medical Biochemistry, Istanbul University-Cerrahpaşa, Istanbul, Turkey.
Background: Saliva contains a variety of biochemical compounds, including antioxidants, and serves as the body's first line of defense against oxidative stress caused by free radicals. The aim of this study was to investigate the effects of dental treatments on salivary oxidative stress biomarkers in children aged 3-5 years with severe early childhood caries (S-ECC) compared to children without caries.
Method: This study was conducted on 20 children aged 3-5 years with severe early childhood caries (S-ECC) and 20 children without caries.
J Transl Med
December 2024
Research Department, Sidra Medicine, Doha, Qatar.
Background: The rising prevalence of Type 2 diabetes mellitus (T2D) in the Qatari population presents a significant public health challenge, highlighting the need for innovative approaches to early detection and management. While most efforts are centered on using blood samples for biomarker discovery, the use of saliva remains underexplored.
Methods: Using noninvasive saliva samples from 2974 Qatari subjects, we analyzed the microbial communities from diabetic, pre-diabetic, and non-diabetic participants based on their HbA1C levels.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!