Seed plants overtook ferns to become the dominant plant group during the late Carboniferous, a period in which the climate became colder and dryer. However, the specific innovations driving the success of seed plants are not clear. Here we report that the appearance of suberin lamellae (SL) contributed to the rise of seed plants. We show that the Casparian strip and SL vascular barriers evolved at different times, with the former originating in the most recent common ancestor (MRCA) of vascular plants and the latter in the MRCA of seed plants. Our results further suggest that most of the genes required for suberin formation arose through gene duplication in the MRCA of seed plants. We show that the appearance of the SL in the MRCA of seed plants enhanced drought tolerance through preventing water loss from the stele. We hypothesize that SL provide a decisive selective advantage over ferns in arid environments, resulting in the decline of ferns and the rise of gymnosperms. This study provides insights into the evolutionary success of seed plants and has implications for engineering drought-tolerant crops or fern varieties.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41477-023-01555-1DOI Listing

Publication Analysis

Top Keywords

seed plants
32
mrca seed
12
plants
9
suberin lamellae
8
lamellae contributed
8
contributed rise
8
seed
8
rise seed
8
success seed
8
evolutionary innovation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!