AI Article Synopsis

Article Abstract

The complex relationships between continuously monitored health signals and therapeutic regimens can be modelled via machine learning. However, the clinical implementation of the models will require changes to clinical workflows. Here we outline ClinAIOps ('clinical artificial-intelligence operations'), a framework that integrates continuous therapeutic monitoring and the development of artificial intelligence (AI) for clinical care. ClinAIOps leverages three feedback loops to enable the patient to make treatment adjustments using AI outputs, the clinician to oversee patient progress with AI assistance, and the AI developer to receive continuous feedback from both the patient and the clinician. We lay out the central challenges and opportunities in the deployment of ClinAIOps by means of examples of its application in the management of blood pressure, diabetes and Parkinson's disease. By enabling more frequent and accurate measurements of a patient's health and more timely adjustments to their treatment, ClinAIOps may substantially improve patient outcomes.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41551-023-01115-0DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
8
intelligence clinical
8
clinical care
8
continuous therapeutic
8
therapeutic monitoring
8
framework integrating
4
integrating artificial
4
clinical
4
care continuous
4
monitoring complex
4

Similar Publications

Deep Equilibrium Unfolding Learning for Noise Estimation and Removal in Optical Molecular Imaging.

Comput Med Imaging Graph

January 2025

CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China; National Key Laboratory of Kidney Diseases, Beijing 100853, China. Electronic address:

In clinical optical molecular imaging, the need for real-time high frame rates and low excitation doses to ensure patient safety inherently increases susceptibility to detection noise. Faced with the challenge of image degradation caused by severe noise, image denoising is essential for mitigating the trade-off between acquisition cost and image quality. However, prevailing deep learning methods exhibit uncontrollable and suboptimal performance with limited interpretability, primarily due to neglecting underlying physical model and frequency information.

View Article and Find Full Text PDF

Objectives: Contrast agents are frequently administered in computed tomography (CT) scans used for opportunistic screening of osteoporosis. The objective of this study is to compare the impact of contrast-related bone mineral density (BMD) increase between phantom-based and internal CT calibration techniques.

Materials And Methods: Phantom-based and internal CT calibration techniques were used to determine trabecular BMD in 93 existing clinical CT scans of the lumbar spine of 34 subjects, scanned before and after administration of contrast agents.

View Article and Find Full Text PDF

Objective: The extent of resection (EOR) and postoperative residual tumor (RT) volume are prognostic factors in glioblastoma. Calculations of EOR and RT rely on accurate tumor segmentations. Raidionics is an open-access software that enables automatic segmentation of preoperative and early postoperative glioblastoma using pretrained deep learning models.

View Article and Find Full Text PDF

Purpose: Human epidermal growth factor receptor 2 (HER2)-targeted therapies have shown promise in treating -amplified metastatic colorectal cancer (mCRC). Identifying optimal biomarkers for treatment decisions remains challenging. This study explores the potential of artificial intelligence (AI) in predicting treatment responses to trastuzumab plus pertuzumab (TP) in patients with -amplified mCRC from the phase II TRIUMPH trial.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!