The gold-standard treatment for Parkinson's disease is levodopa (L-DOPA), which is taken orally and absorbed intestinally. L-DOPA must reach the brain intact to exert its clinical effect; peripheral metabolism by host and microbial enzymes is a clinical management issue. The gut microbiota is altered in PD, with one consistent and unexplained observation being an increase in Bifidobacterium abundance among patients. Recently, certain Bifidobacterium species were shown to have the ability to metabolize L-tyrosine, an L-DOPA structural analog. Using both clinical cohort data and in vitro experimentation, we investigated the potential for commensal Bifidobacteria to metabolize this drug. In PD patients, Bifidobacterium abundance was positively correlated with L-DOPA dose and negatively with serum tyrosine concentration. In vitro experiments revealed that certain species, including B. bifidum, B. breve, and B. longum, were able to metabolize this drug via deamination followed by reduction to the compound 3,4-dihydroxyphenyl lactic acid (DHPLA) using existing tyrosine-metabolising genes. DHPLA appears to be a waste product generated during regeneration of NAD +. This metabolism occurs at low levels in rich medium, but is significantly upregulated in nutrient-limited minimal medium. Discovery of this novel metabolism of L-DOPA to DHPLA by a common commensal may help inform medication management in PD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10628163PMC
http://dx.doi.org/10.1038/s41598-023-45953-zDOI Listing

Publication Analysis

Top Keywords

commensal bifidobacteria
8
bifidobacterium abundance
8
patients bifidobacterium
8
metabolize drug
8
l-dopa
5
novel pathway
4
pathway levodopa
4
metabolism
4
levodopa metabolism
4
metabolism commensal
4

Similar Publications

regulates carbohydrate metabolic functions of the gut microbiome in C57BL/6 mice.

Gut Microbes

December 2025

Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX, USA.

The probiotic impact of microbes on host metabolism and health depends on both host genetics and bacterial genomic variation. is the predominant human gut commensal emerging as a next-generation probiotic. Although this bacterium exhibits substantial intraspecies diversity, it is unclear whether genetically distinct strains might lead to functional differences in the gut microbiome.

View Article and Find Full Text PDF

Cellulolytic flagellates are essential for the symbiotic digestion of lignocellulose in the gut of lower termites. Most species are associated with host-specific consortia of bacterial symbionts from various phyla. 16S rRNA-based diversity studies and taxon-specific fluorescence in situ hybridization revealed a termite-specific clade of Actinomycetales that colonise the cytoplasm of Trichonympha spp.

View Article and Find Full Text PDF

Introduction: Cutaneous T-cell lymphoma (CTCL) is closely associated with the host microbiome. While recent evidence suggests that shifts in specific bacterial taxa are associated with response to UV-B, a form of non-ionizing radiation, the impact of ionizing radiation (IR) has not been investigated.

Methods: 16S rRNA and gene amplicon sequencing were performed on DNA extracted from swabs of lesional/non-lesional skin of 12 CTCL patients before/after TSEBT or local IR and from 25 matched healthy controls (HC).

View Article and Find Full Text PDF

Neonatal gut microbiota and risk of developing food sensitization and allergy.

J Allergy Clin Immunol

December 2024

Laboratorie for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan; Laboratorie for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Intestinal Microbiota Project, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan. Electronic address:

Background: Food sensitization (FS) develops in early infancy and is a risk factor for subsequent food allergy (FA). Recent evidence suggests relationships of gut microbiota with FS and FA. However, little is known about the role of neonatal gut microbiota in the pathobiology of these manifestations.

View Article and Find Full Text PDF

Gut microbiota markers in early childhood are linked to farm living, pets in household and allergy.

PLoS One

November 2024

Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.

Background: Children growing up on farms or with pets have a lower risk of developing allergy, which may be linked to their gut microbiota development during infancy.

Methods: Children from the FARMFLORA birth cohort (N = 65), of whom 28 (43%) lived on a dairy farm and 40 (62%) had pets, provided fecal samples at intervals from 3 days to 18 months of age. Gut microbiota composition was characterized using quantitative microbial culture of various typical anaerobic and facultatively anaerobic bacteria, with colonization rate and population counts of bacterial groups determined at the genus or species level.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!