Chromatin conformation reorganization is emerging as an important layer of regulation for gene expression and lineage specification. Yet, how lineage-specific transcription factors contribute to the establishment of cell type-specific 3D chromatin architecture in the immune cells remains unclear, especially for the late stages of T cell subset differentiation and maturation. Regulatory T cells (Treg) are mainly generated in the thymus as a subpopulation of T cells specializing in suppressing excessive immune responses. Here, by comprehensively mapping 3D chromatin organization during Treg cell differentiation, we show that Treg-specific chromatin structures were progressively established during its lineage specification, and highly associated with Treg signature gene expression. Additionally, the binding sites of Foxp3, a Treg lineage specifying transcription factor, were highly enriched at Treg-specific chromatin loop anchors. Further comparison of the chromatin interactions between wide-type Tregs versus Treg cells from Foxp3 knock-in/knockout or newly-generated Foxp3 domain-swap mutant mouse revealed that Foxp3 was essential for the establishment of Treg-specific 3D chromatin architecture, although it was not dependent on the formation of the Foxp3 domain-swapped dimer. These results highlighted an underappreciated role of Foxp3 in modulating Treg-specific 3D chromatin structure formation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10628232 | PMC |
http://dx.doi.org/10.1038/s41467-023-42647-y | DOI Listing |
Immunity
September 2024
Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan; Department of Experimental Pathology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan. Electronic address:
The master transcription factor of regulatory T (Treg) cells, forkhead box protein P3 (Foxp3), controls Treg cell function by targeting certain genes for activation or repression, but the specific mechanisms by which it mediates this activation or repression under different conditions remain unclear. We found that Ikzf1 associates with Foxp3 via its exon 5 (IkE5) and that IkE5-deficient Treg cells highly expressed genes that would otherwise be repressed by Foxp3 upon T cell receptor stimulation, including Ifng. Treg-specific IkE5-deletion caused interferon-γ (IFN-γ) overproduction, which destabilized Foxp3 expression and impaired Treg suppressive function, leading to systemic autoimmune disease and strong anti-tumor immunity.
View Article and Find Full Text PDFCell Rep
May 2024
CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science (CAS), Beijing 100101, China; Department of Savaid Medical School, University of the Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
The activation and specialization of regulatory T cells (Tregs) are crucial for maintaining immune self-tolerance; however, the regulation of these processes by histone modifications is not fully understood. Here, we show that T cell-specific deletion of the lysine methyltransferase MLL1 results in a spontaneous lymphocyte proliferation phenotype in aged mice without disturbing the development of conventional T cells and Tregs. Treg-specific MLL1 ablation leads to a systemic autoimmune disease associated with Treg dysfunction.
View Article and Find Full Text PDFMucosal Immunol
February 2024
Mucosal Inflammation Program University of Colorado, Anschutz Medical Campus, Aurora, CO, USA; Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition University of Colorado, Anschutz Medical Campus, Aurora, CO, USA. Electronic address:
The heat shock response is a critical component of the inflammatory cascade that prevents misfolding of new proteins and regulates immune responses. Activation of clusters of differentiation (CD)4 T cells causes an upregulation of heat shock transcription factor, heat shock factor 1 (HSF1). We hypothesized that HSF1 promotes a pro-regulatory phenotype during inflammation.
View Article and Find Full Text PDFNat Commun
November 2023
Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA.
Chromatin conformation reorganization is emerging as an important layer of regulation for gene expression and lineage specification. Yet, how lineage-specific transcription factors contribute to the establishment of cell type-specific 3D chromatin architecture in the immune cells remains unclear, especially for the late stages of T cell subset differentiation and maturation. Regulatory T cells (Treg) are mainly generated in the thymus as a subpopulation of T cells specializing in suppressing excessive immune responses.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2023
Department of Surgery, University of British Columbia, Vancouver V6T 1Z4, BC, Canada.
Regulatory T cell (Treg) therapy is a promising approach to improve outcomes in transplantation and autoimmunity. In conventional T cell therapy, chronic stimulation can result in poor in vivo function, a phenomenon termed exhaustion. Whether or not Tregs are also susceptible to exhaustion, and if so, if this would limit their therapeutic effect, was unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!