A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

LensAge index as a deep learning-based biological age for self-monitoring the risks of age-related diseases and mortality. | LitMetric

Age is closely related to human health and disease risks. However, chronologically defined age often disagrees with biological age, primarily due to genetic and environmental variables. Identifying effective indicators for biological age in clinical practice and self-monitoring is important but currently lacking. The human lens accumulates age-related changes that are amenable to rapid and objective assessment. Here, using lens photographs from 20 to 96-year-olds, we develop LensAge to reflect lens aging via deep learning. LensAge is closely correlated with chronological age of relatively healthy individuals (R > 0.80, mean absolute errors of 4.25 to 4.82 years). Among the general population, we calculate the LensAge index by contrasting LensAge and chronological age to reflect the aging rate relative to peers. The LensAge index effectively reveals the risks of age-related eye and systemic disease occurrence, as well as all-cause mortality. It outperforms chronological age in reflecting age-related disease risks (p < 0.001). More importantly, our models can conveniently work based on smartphone photographs, suggesting suitability for routine self-examination of aging status. Overall, our study demonstrates that the LensAge index may serve as an ideal quantitative indicator for clinically assessing and self-monitoring biological age in humans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10628111PMC
http://dx.doi.org/10.1038/s41467-023-42934-8DOI Listing

Publication Analysis

Top Keywords

biological age
12
chronological age
12
age
8
risks age-related
8
disease risks
8
lensage
6
lensage deep
4
deep learning-based
4
learning-based biological
4
age self-monitoring
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!