Therapeutic Phage Monitoring: A Review.

Clin Infect Dis

Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia.

Published: November 2023

With the global rise in antimicrobial resistance, there has been a renewed interest in the application of therapeutic phages to treat bacterial infections. Therapeutic phage monitoring (TPM) is proposed as an essential element of phage therapy (PT) protocols to generate data and fill knowledge gaps regarding the in vivo efficacy of therapeutic phages, patients' immune responses to PT, and the wider ecological effects of PT. By monitoring phage concentrations in blood and tissues, together with immune responses and possible ecological changes during PT, TPM may enable the optimization of dosing and the implementation of precision medicine approaches. Furthermore, TPM can validate diagnostic surrogates of efficacy, direct research efforts, and establish quality assurance indicators for therapeutic phage products. Thus, TPM holds great potential for enhancing our understanding of the multidirectional phage-bacteria-host interactions and advancing "best practice" PT, ultimately improving patient care.

Download full-text PDF

Source
http://dx.doi.org/10.1093/cid/ciad497DOI Listing

Publication Analysis

Top Keywords

therapeutic phage
12
phage monitoring
8
therapeutic phages
8
immune responses
8
therapeutic
5
monitoring review
4
review global
4
global rise
4
rise antimicrobial
4
antimicrobial resistance
4

Similar Publications

Nucleic acid recognition during prokaryotic immunity.

Mol Cell

January 2025

Laboratory of Bacteriology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA. Electronic address:

Parasitic elements often spread to hosts through the delivery of their nucleic acids to the recipient. This is particularly true for the primary parasites of bacteria, bacteriophages (phages) and plasmids. Although bacterial immune systems can sense a diverse set of infection signals, such as a protein unique to the invader or the disruption of natural host processes, phage and plasmid nucleic acids represent some of the most common molecules that are recognized as foreign to initiate defense.

View Article and Find Full Text PDF

Isolation and characterization of a broad-spectrum bacteriophage against multi-drug resistant Escherichia coli from waterfowl field.

Poult Sci

January 2025

Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, PR China. Electronic address:

Escherichia coli (E. coli) is a significant pathogen responsible for intestinal infections and foodborne diseases. The rise of antibiotic resistance poses a significant challenge to global public health.

View Article and Find Full Text PDF

The receptor tyrosine kinase EphB4 is involved in tumor angiogenesis, proliferation, and metastasis. Designed ankyrin repeat proteins (DARPins) binding to the EphB4 extracellular domain were identified from a combinatorial library using phage display. Surface plasmon resonance (SPR) allowed us to distinguish between DARPins that either compete with the EphB4 ligand ephrin-B2 for binding to a common site or target a different epitope.

View Article and Find Full Text PDF

Objective: Immune-related pancytopenia (IRP) is characterized by autoantibody-mediated destruction or suppression of bone marrow cells, leading to pancytopenia. This study aimed to explore the role of TRAPPC4 (trafficking protein particle complex subunit 4) as a key autoantigen in IRP, including epitope identification and immune activation mechanisms.

Methods: A total of 90 participants were included in the study, divided into four groups: 30 newly diagnosed IRP patients, 25 IRP remission patients, 20 patients with control hematologic conditions (severe aplastic anemia [SAA] and myelodysplastic syndrome [MDS]), and 15 healthy controls.

View Article and Find Full Text PDF

Unlabelled: Type IV pili (T4P) are important virulence factors that allow bacteria to adhere to and rapidly colonize their hosts. T4P are primarily composed of major pilins that undergo cycles of extension and retraction and minor pilins that initiate pilus assembly. Bacteriophages use T4P as receptors and exploit pilus dynamics to infect their hosts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!