Solutions for bone and joint infection (BJI) are needed where conventional treatments are inadequate. Bacteriophages (phages) are naturally occurring viruses that infect bacteria and have been harnessed for refractory bone and joint infections (BJI) in many case reports. Here we examine the safety and efficacy of English-language published cases of BJI since 2010 with phage therapy. From 33 reported cases of BJI treated with phage therapy, 29 (87%) achieved microbiological or clinical success, 2 (5.9%) relapsed with the same organisms, and 2 (5.9%) with a different organism. Of these 4 relapses, all but 1 had eventual clinical resolution with additional surgery or phage treatments. Eight out of 33 cases (24%) reported mild, transient adverse events with no serious events reported. Further work is needed to understand the true efficacy of phages and the role of phages in BJI. Opportunities lay ahead for thoughtfully designed clinical trials adapted to individualized therapies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/cid/ciad533 | DOI Listing |
Sci Rep
December 2024
Pharmacy Department, Hospices Civils de Lyon, Hôpital E. Herriot, Plateforme FRIPHARM, 69437, Lyon, France.
Phage therapy uses viruses (phages) against antibiotic resistance. Tailoring treatments to specific patient strains requires stocks of various highly concentrated purified phages. It, therefore, faces challenges: titration duration and specificity to a phage/bacteria couple; purification affecting stability; and highly concentrated suspensions tending to aggregate.
View Article and Find Full Text PDFBMC Cancer
December 2024
Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, P.R. China.
Purpose: Antiangiogenesis therapy has become a hot field in cancer research. Given that tumor blood vessels often express specific markers related to angiogenesis, the study of these heterogeneous molecules in different tumor vessels holds promise for advancing anti-angiogenic therapy. Previously using phage display technology, we identified a targeting peptide named GX1 homing to gastric cancer vessels for the first time.
View Article and Find Full Text PDFPeerJ
December 2024
Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Muang, Phitsanulok, Thailand.
Background: poses a significant public health threat. Phage-encoded antimicrobial peptides (AMPs) have emerged as promising candidates in the battle against antibiotic-resistant .
Methods: Antimicrobial peptides from the endolysin of bacteriophage were designed from bacteriophage vB_AbaM_PhT2 and vB_AbaAut_ChT04.
Appl Biosaf
December 2024
Advarra, Columbia, Maryland, USA.
Introduction: Discussion of gene-modified investigational products (IPs) in clinical trials has largely focused on nucleic acid-based vectors, viral vectors, and gene-modified cellular products involving mammalian cells. Use of bacteria and bacteriophages as IPs is resurgent, and discussion of the risks associated with genetic modification of these organisms has become pertinent to the biosafety community.
Methods: This review article summarizes the United States Food and Drug Administration classification for IPs comprising bacteria or bacteriophages and provides an overview of clinical trials conducted to date involving genetically modified bacteria.
Front Pharmacol
December 2024
Department of Bacteriology and Virology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
Antimicrobial resistance (AMR) poses a significant global threat to public health systems, rendering antibiotics ineffective in treating infectious diseases. Combined use of bio compounds, including bacteriophages and plant extracts, is an attractive approach to controlling antibiotic resistance. In this study, the combination of phage cocktail (Isf-Pm1 and Isf-Pm2) and crude extract (AME) was investigated in controlling biofilm-forming multi-drug resistant isolates, and a phantom bladder model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!