Bichromomyia flaviscutellata (Mangabeira, 1942) sensu stricto (Diptera: Psychodidae) has been recognized as the main vector of Leishmania amazonensis in the Brazilian Amazon. For this reason, it is of paramount importance to understand the distribution of genetic diversity of populations of this vector, particularly the genetic structure and gene flow, for its management and control efforts. This study investigated the phylogeographic structure of five B. flaviscutellata s.s. populations from the central Brazilian Amazon region by analyzing 1,141 bp fragment of the 3' region of the COI gene. A total of 85 specimens of B. flaviscutellata s.s. were sequenced from Manaus (14), Rio Preto da Eva (10), Pitinga (14), Novo Airão (21), and Autazes (26); all in the state of Amazonas. The dataset yielded 59 haplotypes, most of them connected to each other in the main network. There were high levels of intrapopulation genetic variability (h = 0.945 ± 0.035 - 0.978 ± 0.054). The genetic distance values among populations varied from moderate (0.0873) to very high (0.3535), and all comparisons were significant, as well as the hierarchical analysis (ΦST = 0.2145). In contrast, these comparisons revealed a high number of shared sites (Ss = 6-34) and no difference in fixed sites (Sf = 0) among populations indicating absence of historical isolation. The Mantel test indicated that 67.92% (r = 0.6792; P = 0.06) of the genetic structure observed in B. flaviscutellata s.s. cannot be explained by the isolation-by-distance (IBD) model. This genetic structure, weakly explained by the IBD, may be due mainly by the forest habitat fragmentation and the low dispersal (flight) capacity of sand flies. Both factors could lead to population fragmentation and isolation, which promote genetic differentiation. Taken together, these findings suggest that the genetic structure observed in the studied populations of B. flaviscutellata s.s. is likely generated by microevolutionary processes acting at the population level at the present time and, therefore, evolutionary lineages were not recognized among the populations analyzed.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jme/tjad125DOI Listing

Publication Analysis

Top Keywords

genetic structure
16
brazilian amazon
12
bichromomyia flaviscutellata
8
sensu stricto
8
stricto diptera
8
diptera psychodidae
8
region coi
8
coi gene
8
genetic
8
structure observed
8

Similar Publications

Oocyte maturation arrest (OMA) may occur at different stages, including the germinal vesicle (GV), metaphase I (MI), and metaphase II (MII). A total maturation arrest of human oocytes is rarely observed during fertilization (IVF). We have identified a case of infertile female for whom all oocytes fail to mature and are arrested at MI.

View Article and Find Full Text PDF

The homeotic transformation of stamens into pistil-like structures (pistillody) causes cytoplasmic male sterility (CMS). This phenomenon is widely present in plants, and might be induced by intracellular communication (mitochondrial retrograde signaling), but its systemic regulating mechanism is still unclear. In this study, morphological observation showed that the stamens transformed into pistil-like structures, leading to flat and dehiscent pistils, and fruit set decrease in sua-CMS (MS K326, somatic fusion between Nicotiana.

View Article and Find Full Text PDF

Blood-based epigenome-wide association study and prediction of alcohol consumption.

Clin Epigenetics

January 2025

Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.

Alcohol consumption is an important risk factor for multiple diseases. It is typically assessed via self-report, which is open to measurement error through recall bias. Instead, molecular data such as blood-based DNA methylation (DNAm) could be used to derive a more objective measure of alcohol consumption by incorporating information from cytosine-phosphate-guanine (CpG) sites known to be linked to the trait.

View Article and Find Full Text PDF

Krait2: a versatile software for microsatellite investigation, visualization and marker development.

BMC Genomics

January 2025

Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610225, China.

Background: Microsatellites are highly polymorphic repeat sequences ubiquitously interspersed throughout almost all genomes which are widely used as powerful molecular markers in diverse fields. Microsatellite expansions play pivotal roles in gene expression regulation and are implicated in various neurological diseases and cancers. Although much effort has been devoted to developing efficient tools for microsatellite identification, there is still a lack of a powerful tool for large-scale microsatellite analysis.

View Article and Find Full Text PDF

Genome-wide identification of the Sec14 gene family and the response to salt and drought stress in soybean (Glycine max).

BMC Genomics

January 2025

Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China.

Background: The Sec14 domain is an ancient lipid-binding domain that evolved from yeast Sec14p and performs complex lipid-mediated regulatory functions in subcellular organelles and intracellular traffic. The Sec14 family is characterized by a highly conserved Sec14 domain, and is ubiquitously expressed in all eukaryotic cells and has diverse functions. However, the number and characteristics of Sec14 homologous genes in soybean, as well as their potential roles, remain understudied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!