Rational design and exploration of oxygen evolution reaction (OER) electrocatalysts with exceptional performance are crucial for the advancement of the hydrogen energy economy. In this study, vanadium/cobalt (V/Co) dual-doped nickel sulfide (NiS) nanowires were synthesized on a nickel foam (NF) substrate to overcome the sluggish kinetics typically associated with OER. The resulting catalyst exhibited outstanding electrocatalytic activity towards OER in a 1.0 M KOH electrolyte, with a minimal overpotential of 155 and 263 mV, the current densities of 10 and 100 mA cm can be achieved effortlessly. Importantly, this catalyst demonstrated remarkable stability over extended periods, maintaining its performance for 25 h under constant current density, 55 h under continuously varying current density, and even after undergoing 2000 cycles of cyclic voltammetry (CV), which had surpassed those of most non-noble metal electrocatalysts. The X-ray photoelectron spectroscopy and density functional theory analyses confirmed that the co-doping of Co and V redistributed the electron of Ni, leading to improvements in the d-band center, structural characteristics, and free energy landscapes of adsorbed intermediates. This work presents a novel strategy, based on the connection between electronic structure and catalytic properties, in the design of double-doped catalysts for efficient OER.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2023.10.161 | DOI Listing |
Small
December 2024
College of Chemistry Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China.
It is of great significance for the development of hydrogen energy technology by exploring the new-type and high-efficiency electrocatalysts (such as single atom catalysts (SACs)) for water splitting. In this paper, by combining interface engineering and doping engineering, a unique single atom iron (Fe)-doped carbon-coated nickel sulfide (NiS) quantum wires (NiS@Fe-SACs) is prepared as a high-performance bi-functional electrocatalyst for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Theoretical calculation and experimental results show that the addition of atomic Fe species can effectively adjust the electronic structure of sulfide, the interfacial electron transfer modulates the d-band center position, optimizing the transient state of the catalytic process and adsorption energy of hydrogen/oxygen intermediates, and greatly accelerates the kinetics of HER and OER.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Department of Chemical Engineering, Hanyang University (Seoul Campus), 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
A promising approach to energy-efficient hydrogen production is coupling the hydrogen evolution reaction (HER) with the urea oxidation reaction (UOR), significantly reducing the energy requirements. However, achieving a low-cost yet high-performance electrocatalyst for both HER and UOR remains challenging. Here, we present a facile method for synthesizing nanoporous nickel sulfide (NiS) and nickel hexacyanoferrate (NiHCF) nanocubes directly on nickel foam (NF) without any added nickel source using a cyclic voltammetry technique.
View Article and Find Full Text PDFSmall
December 2024
Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China.
Nanoscale
December 2024
Optoelectronics Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University, Yongbong-Dong, Buk-Gu, Gwangju 61186, South Korea.
During electrocatalytic water splitting, surface reconstruction often occurs to generate truly active species for catalytic reactions, but the stability and mass activity of the catalysts is a huge challenge. A method that combines cation doping with morphology control strategies and constructs an amorphous-crystalline heterostructure is proposed to achieve deep reconstruction of the catalyst during the electrochemical activation process, thereby significantly improving catalytic activity and stability. Amorphous iron borate (FeBO) is deposited on cobalt-doped nickel sulfide (Co-NiS) crystals to form ultrathin nanosheet heterostructures (FeBO/Co-NiS) as bifunctional electrocatalysts for the OER and methanol oxidation reaction (MOR).
View Article and Find Full Text PDFJ Colloid Interface Sci
February 2025
State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083, PR China. Electronic address:
Designing highly active and stable bifunctional catalysts for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) under alkaline conditions is crucial for sustainable overall water splitting. Herein, we present a targeted reconstruction of NiS by introducing tantalum, achieving remarkable overall water splitting performance through the separate activation of the lattice oxygen mechanism and hydrogen spillover. Electrochemical Mass Spectrometry and in-situ Raman spectroscopy reveal that tantalum induces NiS to reconstruct into nickel hydroxide during OER, thereby enhancing catalytic activity via the activation of the lattice oxygen mechanism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!