Surface plasmon resonance Bismuth-modified NH-UiO-66 with enhanced photocatalytic tetracycline degradation performance.

J Colloid Interface Sci

Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, Pedion Areos 38834, Volos, Greece. Electronic address:

Published: February 2024

For nearly a century, the misuse of antibiotics has gradually polluted water and threatened human health. Photocatalysis is considered an efficient way to remove antibiotics from water. Zirconium-based metal-organic frameworks have attracted much attention as promising photocatalysts for the degradation of antibiotics. However, single Zirconium-based metal-organic frameworks can still not achieve a more satisfactory photocatalytic efficiency, due to poor light absorption and charge separation efficiency. In this study, a novel metal-loaded metal-organic frameworks material was explored. As a potential photocatalytic material, the performance of NH-UiO-66 in the photocatalytic degradation of tetracycline was greatly improved just by the loading of a single metal. Bismuth/NH-UiO-66 photocatalysts of various compositions were physicochemically (TEM, SEM, XRD, XPS, BET, FTIR, UV-VIS, PL), and electrochemically (electrochemical impedance spectroscopy, photocurrent response) characterized. We evaluated the photocatalytic performance of Bismuth/NH-UiO-66 composites by measuring their ability towards tetracycline decomposition in simulated sunlight irradiation conditions. The experimental results indicated that the introduction of metal Bismuth significantly boosts the photocatalytic activity of the composite catalysts. The final degradation rate of Bismuth/NH-UiO-66 for tetracycline was found to be 95.8%, namely 2.7 times higher than pure NH-UiO-66. This behavior is due to the surface plasmon resonance effect of Bismuth, which ameliorates the photocatalyst's electron-hole separation and strengthens the charge transfer. Apart from that, the presence of Bismuth magnifies the visible-light absorption range of Bismuth/NH-UiO-66. In this study, an innovative approach for designing efficient and cost-effective metal-modified metal-organic frameworks photocatalysts is proposed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2023.10.149DOI Listing

Publication Analysis

Top Keywords

metal-organic frameworks
16
surface plasmon
8
plasmon resonance
8
zirconium-based metal-organic
8
photocatalytic
6
resonance bismuth-modified
4
bismuth-modified nh-uio-66
4
nh-uio-66 enhanced
4
enhanced photocatalytic
4
tetracycline
4

Similar Publications

Heavy metal pollution is a major environmental and health problem due to the toxicity and persistence of metals such as lead, mercury, cadmium, and arsenic in water, soil, and air. Advances in sensor technology have significantly improved the detection and quantification of heavy metals, providing real-time monitoring and mitigation tools. This review explores recent developments in heavy metal detection, focusing on innovative uses of immobilized chromogenic reagents, nanomaterials, perovskites, and nanozymes.

View Article and Find Full Text PDF

Powder X-ray diffraction (PXRD) is a prevalent technique in materials characterization. While the analysis of PXRD often requires extensive human manual intervention, and most automated method only achieved at coarse-grained level. The more difficult and important task of fine-grained crystal structure prediction from PXRD remains unaddressed.

View Article and Find Full Text PDF

Periodontitis, a common chronic inflammatory condition caused by bacteria, leads to loss of attachment, resorption of alveolar bone, and ultimately tooth loss. Therefore, reducing bacterial load and fostering alveolar bone regeneration are essential components in the treatment of periodontitis. In this study, we prepared smaller-sized Ag-Metal Organic Frameworks (Ag@MOF) and loaded with sodium alginate (Alg) hydrogel for periodontitis treatment.

View Article and Find Full Text PDF

Enhancing the decomposition rate of ammonium perchlorate (AP), the most common oxidizer in solid propellants, is important for improving propellant performance. Metal organic frameworks (MOFs) have been developed as key materials for catalyzing AP decomposition, as they can achieve good dispersion of active sites through in-situ decomposition. Despite having considerable potential, the structural transformation process and catalytic performance of MOFs in AP decomposition are still unclear, which seriously hinders their application in the field of AP decomposition.

View Article and Find Full Text PDF

Design and synthesis of a new highly efficient adjustable Ln-MOF for fluorescence sensing and information encryption.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy & New Function Materials, Yanan University, Yan'an 716000, China.

Elemental analysis, infrared spectroscopy, and X-ray single crystal diffraction indicated that a novel metal-organic framework (Tb-MOF) designated as 0.5n[Hbpy]·[Tb(dpa)(HO)]·4nHO was synthesized successfully, (where Hdpa = 5-(3, 4-dicarboxy- phenoxy) isophenic acid, bpy = protonated 4,4'-bipyridine). Tb-MOF adopts a 3D network structure based on Tb ions and the (dpa) ligand through µ: η, η, η, η binding modes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!