After long-term water injection, mature reservoirs are encountered with the adverse consequences of the treatment, including erosion, rock formation destruction and drastic decline in oil recovery rate for the past years. Today, the inexpensive and highly efficient polymer microspheres can be considered as a solution to the current issue with excess water production. Studies on practical utilization of polymer microspheres to plug high-permeability zones in heterogeneous reservoirs gained immense popularity in oil production lately. This review aims to give classification to polymer microspheres, including fluorescent polymer microspheres, low elastic polymer microspheres, viscoelastic polymer microspheres and nano-composite polymer microspheres and discuss the specific structural and behavioral traits of each polymer microsphere. Differences in preparation methods, comparisons of performance evaluation and oil recovery rate assessment were also studied. The current complications with functional application of polymer microspheres and its further improvements were considered. This review will provide assistance to the researchers with further advancements of the polymer microspheres, by effectively increasing the oil recovery levels in heterogeneous reservoirs, which will also meet the economical and ecological requirements of the oilfields.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2023.113622 | DOI Listing |
AAPS PharmSciTech
January 2025
School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia, 30332-0100, U.S.A..
Delivery of therapies into skin is attractive for medical indications including vaccination and treatment of dermatoses but is highly constrained by the stratum corneum barrier. Microneedle (MN) patches have emerged as a promising technology to enable non-invasive, intuitive, and low-cost skin delivery. When combined with biodegradable polymer formulations, MN patches can further enable controlled-release drug delivery without injection.
View Article and Find Full Text PDFLangmuir
January 2025
Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114 Tehran, Iran.
Carbon microspheres (CMSs) are recognized as highly effective microwave absorbers due to their exceptional wave absorption properties. In this study, 5,10,15,20-tetrakis(4-aminophenyl)porphyrin, a metamaterial, was chemically bonded to CMSs─considered a conjugated carbon structure─using a 1,3-dibromopropane linker to explore the synergistic properties and microwave absorption capabilities of the synthesized composite. The synthesized structures were characterized by using X-ray diffraction, FE-SEM, Fourier transform infrared, diffuse reflectance spectroscopy, and VNA analyses.
View Article and Find Full Text PDFNature
January 2025
Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
The forces generated by action potentials in muscle cells shuttle blood, food and waste products throughout the luminal structures of the body. Although non-invasive electrophysiological techniques exist, most mechanosensors cannot access luminal structures non-invasively. Here we introduce non-toxic ingestible mechanosensors to enable the quantitative study of luminal forces and apply them to study feeding in living Caenorhabditis elegans roundworms.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China. Electronic address:
Waste Manag
December 2024
Key Laboratory of Agro-Environment in Downstream of Yangtze Plain/Scientific Observing and Experimental Station of Arable Land Conservation (Jiangsu), Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!