Stimulus-responsive nanodrugs have been extensively studied and their structural changes in the cells are important for controlled intracellular drug release. Histone citrullination of peptidylarginine deiminase 4 (PAD4) regulates the expression of tumor suppressor genes. In our previous study, compounds such as YW3-56 (356) were developed as potent PAD4 inhibitors with excellent anti-tumor activity in vitro and in vivo. To enhance the antitumor activity and improve the bioavailability, we further optimized the structure by modifying the phenylboronic acid moiety to the PAD4 inhibitor (4B). Taking advantage of the oxidative stress responsiveness of the phenylboronic acid moiety, in this study, we covalently attached 4B to RGD sequence peptide modified chitosan (K-CRGDV) to construct this new oxidative stress responsive nanodrug (K-CRGDV-4B). The modification of RGD sequence peptide conferred the nanodrug the ability to actively target tumors. The release mechanism was verified by UV-Vis spectroscopy, NMR. The anti-tumor and anti-metastatic properties of K-CRGDV-4B were demonstrated by in vitro cytotoxicity assay and in vivo mouse Lewis lung cancer metastasis model. In addition, K-CRGDV-4B modulates the ratio of immune cells in LLC tumor-bearing mice. Immunosuppressive proteins such as PD1 were inhibited, while IFN-γ and IFN-β, which are stimulators of tumor immune responses, were upregulated. Overall, K-CRGDV-4B is a stimulus-responsive nanodrug that responds to the tumor microenvironment by inhibiting PAD4 activity, blocking the formation of neutrophil extracellular traps (NETs), and improving the tumor immune microenvironment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2023.115826 | DOI Listing |
Nan Fang Yi Ke Da Xue Xue Bao
December 2024
Department of Emergency Medicine, Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University (Changsha First Hospital), Changsha 410005, China.
Objectives: To investigate the inhibitory effect of GSK484, a PAD4 inhibitor, on H3Cit expression following sepsis and its effects for improving sepsis-induced endothelial dysfunction.
Methods: Eighteen C57BL/6 mice were randomized into sham-operated group, sepsis model group and GSK484 treatment group (6), and in the latter two groups, models of sepsis were established by cecal ligation and puncture (CLP). The mice in GSK484 treatment group were given an intraperitoneal injection of GSK484 (4 mg/kg) on the second day following the surgery.
Commun Chem
December 2024
Protein-Protein Interaction Laboratory, The Francis Crick Institute, London, UK.
Covalent drugs can achieve high potency with long dosing intervals. However, concerns remain about side-effects associated with off-target reactivity. Combining macrocyclic peptides with covalent warheads provides a solution to minimise off-target reactivity: the peptide enables highly specific target binding, positioning a weakly reactive warhead proximal to a suitable residue in the target.
View Article and Find Full Text PDFThe microenvironment plays an important role in promoting tumor cell chemoresistance, but the mechanisms responsible for this effect are not clear. Here, using models of multiple myeloma (MM) and solid cancers, we demonstrate a novel mechanism mediated by neutrophils, a major cell population in the bone marrow (BM), that protects cancer cells from chemotherapeutics. We show that in response to tumor-derived soluble factors, BM neutrophils release their DNA in the form of neutrophil extracellular traps (NETs).
View Article and Find Full Text PDFCell Oncol (Dordr)
November 2024
State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China.
Background: Lenvatinib is a potent first-line therapy for patients with hepatocellular carcinoma (HCC), but it also increased the number of neutrophils in HCC tumor microenvironment.
Methods: CitH3, MPO-DNA, elastase and MPO activity were measured for assessing neutrophil extracellular traps (NETs) in vivo and in vitro. Cell cuproptosis was assessed by measurement of copper content, FDX1, and pyruvate.
Gene
February 2025
Department of Rheumatology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China. Electronic address:
Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by chronic inflammation and joint destruction, with emerging evidence implicating gut microbiota dysbiosis in its pathogenesis. The current study explores the role of ferroptosis, a form of regulated cell death driven by iron-dependent lipid peroxidation, in modulating gut microbiota and metabolic dysregulation through the enzyme peptidyl arginine deiminase 4 (PAD4) in collagen-induced arthritis (CIA) mouse model. Our findings demonstrate that ferroptosis exacerbates RA-related inflammatory responses and joint damage by upregulating PAD4 expression, which, in turn, influences the gut microbial composition and associated metabolite profiles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!