We address a generalization of the concept of metapopulation capacity for trees and networks acting as the template for ecological interactions. The original measure had been derived from an insightful phenomenological model and is based on the leading eigenvalue of a suitable landscape matrix. It yields a versatile predictor of metapopulation persistence through a threshold value of the eigenvalue determined by ecological features of the focal species. Here, we present an analytical solution to a fundamental microscopic model that incorporates key ingredients of metapopulation dynamics and explicitly distinguishes between individuals comprising the "settled population" and "explorers" seeking colonization. Our approach accounts for general network characteristics (in particular graph-driven directional dispersal which is known to significantly constrain many ecological estimates) and yields a generalized version of the original model, to which it reduces for particular cases. Through examples, including real landscapes used as the template, we compare the predictions from our approach with those of the standard model. Results suggest that in several cases of practical interest, differences are significant. We also examine, with both models, how changes in habitat fragmentation, including removal, addition, or alteration in size, affect metapopulation persistence. The current approach demonstrates a high level of flexibility, enabling the incorporation of diverse "microscopic" elements and their impact on the resulting biodiversity landscape pattern.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10655566 | PMC |
http://dx.doi.org/10.1073/pnas.2311548120 | DOI Listing |
Ecol Lett
January 2025
Museum of Zoology & Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA.
Whether large-scale variation in lineage diversification rates can be predicted by species properties at the population level is a key unresolved question at the interface between micro- and macroevolution. All else being equal, species with biological attributes that confer metapopulation stability should persist more often at timescales relevant to speciation and so give rise to new (incipient) forms that share these biological traits. Here, we develop a framework for testing the relationship between metapopulation properties related to persistence and phylogenetic speciation rates.
View Article and Find Full Text PDFPrev Vet Med
February 2025
Quantitative Veterinary Epidemiology group, Wageningen University and Research Centre, the Netherlands; Biometris, Wageningen University and Research Centre, the Netherlands.
Bovine tuberculosis (bTB) has a complex infection ecology and is difficult to control in many countries, including Ireland. For many years, the Irish national bTB eradication programme relied on cattle-based control measures, including test-and-removal with related movement restrictions. In the early 2000s, badger culling was added as a part of the control measure in the national programme.
View Article and Find Full Text PDFScience
December 2024
School of the Environment, The University of Queensland, St. Lucia, Australia.
Proc Biol Sci
November 2024
Department of Environmental Sciences, University of Puerto Rico, San Juan, PR 00925, USA.
Populations of forest trees exhibit large temporal fluctuations, but little is known about the synchrony of these fluctuations across space, including their sign, magnitude, causes and characteristic scales. These have important implications for metapopulation persistence and theoretical community ecology. Using data from permanent forest plots spanning local, regional and global spatial scales, we measured spatial synchrony in tree population growth rates over sub-decadal and decadal timescales and explored the relationship of synchrony to geographical distance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!