Extracellular vesicles (EVs) are important mediators of cell-to-cell communication in the extracellular space. These membranous nanoparticles carry various molecules, often referred to as "cargo," which are delivered to nearby target cells. In the past decade, developments in nanotechnology have allowed for various new laboratory techniques for the increased utilization of EVs in cellular and animal studies. Such techniques have evolved for the isolation, characterization, and delivery of EVs to biological tissues. This emerging technology has immense clinical potential for both diagnostic and therapeutic applications. Various EV cargo molecules, including DNA, RNA, and proteins, can act as pathological biomarkers. Furthermore, EVs derived from certain cell sources have shown therapeutic benefit in certain pathologies. In addition to their native therapeutic benefit, EVs can be engineered to carry and selectively deliver therapeutic agents. While EVs have gained increasing interest in various pathologies, few studies have compiled their clinical potential in musculoskeletal pathologies. To bridge this gap, we present an overview of EVs, introduce current laboratory preparation techniques, and outline the most recent literature regarding the potential therapeutic applications of EVs in musculoskeletal pathologies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/ten.TEB.2023.0208 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!