Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study, we propose a method for obtaining a new index to evaluate the resolution properties of computed tomography (CT) images in a task-based manner. This method applies a deep convolutional neural network (DCNN) machine learning system trained on CT images with known modulation transfer function (MTF) values to output an index representing the resolution properties of the input CT image [i.e., the resolution property index (RPI)]. Sample CT images were obtained for training and testing of the DCNN by scanning the American Radiological Society phantom. Subsequently, the images were reconstructed using a filtered back projection algorithm with different reconstruction kernels. The circular edge method was used to measure the MTF values, which were used as teacher information for the DCNN. The resolution properties of the sample CT images used to train the DCNN were created by intentionally varying the field of view (FOV). Four FOV settings were considered. The results of adapting this method to the filtered back projection (FBP) and hybrid iterative reconstruction (h-IR) images indicated highly correlated values with the MTF in both cases. Furthermore, we demonstrated that the RPIs could be estimated in the same manner under the same imaging conditions and reconstruction kernels, even for other CT systems, where the DCNN was trained on CT systems produced by the same manufacturer. In conclusion, the RPI, which is a new index that represents the resolution property using the proposed method, can be used to evaluate the resolution of a CT system in a task-based manner.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12194-023-00751-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!