In vivo site-directed photocrosslinking provides a means to probe the vicinity of proteins in their native cellular environment. Because this method relies on the incorporation of unnatural amino acid analogs that are similar in size to natural amino acids, crosslink products are indicative of direct protein-protein interactions. Here, we present the use of this approach to monitor both transient and stable interactions of two proteins of the envelope of Escherichia coli. First, we describe a protocol to characterize the interactions of a secretory protein as it transverses the bacterial envelope with temporal and spatial resolution. We combine site-directed photocrosslinking with radiolabeling of proteins and lipids. Second, we describe a method to purify a photocrosslinked partner protein and to analyze it by mass spectrometry. We use in-gel protein digestion and peptide fragmentation by MALDI-TOF/TOF tandem mass spectrometry to determine the site of interaction on the photocrosslinked partner.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-3445-5_20 | DOI Listing |
Methods Enzymol
January 2025
Area of Bioscience and Biotechnology, School of Materials Science, Japan Advanced Institute of Science and Technology, Asahidai, Nomicity, Ishikawa, Japan. Electronic address:
Site-directed RNA editing (SDRE) holds significant promise for treating genetic disorders resulting from point mutations. Gene therapy, for common genetic illnesses is becoming more popular and, although viable treatments for genetic disorders are scarce, stop codon mutation-related conditions may benefit from gene editing. Effective SDRE generally depends on introducing many guideRNA molecules relative to the target gene; however, large ratios cannot be achieved in the context of gene therapy applications.
View Article and Find Full Text PDFPathogens
January 2025
Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
The papillomavirus E2 protein regulates the transcription, replication, and segregation of viral episomes within the host cell. A multitude of post-translational modifications have been identified which control E2 functions. A highly conserved di-lysine motif within the transactivation domain (TAD) has been shown to regulate the normal functions of the E2 proteins of BPV-1, SfPV1, HPV-16, and HPV-31.
View Article and Find Full Text PDFJ Inorg Biochem
January 2025
IRCCS Fondazione Bietti, Roma, Italy. Electronic address:
Nitrite (NO) interacts with myoglobin (Mb) and hemoglobin (Hb) behaving as a ligand of both the ferrous (i.e., Mb(II) and Hb(II)) and ferric (i.
View Article and Find Full Text PDFPLoS Genet
January 2025
Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
The ability to manipulate gene activity and control transgene expression is essential to study gene function. While several genetic tools for modifying genes or controlling expression separately are available for Caenorhabditis elegans, there are no genetic approaches to generate mutations that simultaneously disrupt gene function and provide genetic access to the cells expressing the disrupted gene. To achieve this, we developed a versatile gene trap strategy based on cGAL, a GAL4-UAS bipartite expression system for C.
View Article and Find Full Text PDFPlant Biotechnol J
January 2025
Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria.
The production of complex multimeric secretory immunoglobulins (SIgA) in Nicotiana benthamiana leaves is challenging, with significant reductions in complete protein assembly and consequently yield, being the most important difficulties. Expanding the physical dimensions of the ER to mimic professional antibody-secreting cells can help to increase yields and promote protein folding and assembly. Here, we expanded the ER in N.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!