A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nanostructure engineering of Pt/Pd-based oxygen reduction reaction electrocatalysts. | LitMetric

AI Article Synopsis

  • Increasing the atomic efficiency of platinum (Pt) and palladium (Pd) is crucial for the development of effective fuel cells.
  • The review focuses on the design and creation of highly active and stable electrocatalysts for the oxygen reduction reaction (ORR) while emphasizing the importance of understanding the detailed mechanisms involved.
  • It aims to provide insights into the nanostructure engineering of Pt/Pd-based ORR electrocatalysts, discussing their pathways, mechanisms, and structure-function relationships to improve future catalyst synthesis.

Article Abstract

Increasing the atomic utilization of Pt and Pd elements is the key to the advancement and broad dissemination of fuel cells. Central to this task is the design and fabrication of highly active and stable Pt- or Pd-based electrocatalysts for the oxygen reduction reaction (ORR), which requires a comprehensive understanding of the ORR pathways and mechanism. Past endeavors have accumulated a wealth of knowledge about the Pt/Pd-based ORR electrocatalysts based on structure engineering, while a systematic review of the nanostructure engineering of Pt/Pd-based ORR electrocatalysts has been rarely reported. In this review, we provide a systematic discussion about the current status of Pt/Pd-based ORR electrocatalysts from the perspective of nanostructure engineering, and we highlight the ORR pathways, mechanisms and theories in order to understand the ORR in a more complex nanocatalyst. Particularly, the underlying structure-function relationship of Pt/Pd-based ORR electrocatalysts is specifically highlighted, which will guide the future synthesis of more efficient ORR electrocatalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3cp03522kDOI Listing

Publication Analysis

Top Keywords

orr electrocatalysts
20
pt/pd-based orr
16
nanostructure engineering
12
orr
9
engineering pt/pd-based
8
oxygen reduction
8
reduction reaction
8
orr pathways
8
electrocatalysts
7
pt/pd-based
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!