Quaternary Carbon Synthesis by Titanocene Catalyzed Radical Allyl Transfer on Epoxides.

Org Lett

Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, D-53121 Bonn, Germany.

Published: November 2023

A versatile titanocene-catalyzed radical allyl transfer reaction on epoxides is reported. Epoxide opening occurs regioselectively at the more hindered side, and variously substituted allyl sulfone may be coupled to this position in an efficient manner, enabling a rapid access to quaternary carbon centers with useful functionalities for further elaboration. Furthermore, the procedure can be expanded to stereoselective variants. This new radical allyl transfer expands the scope of allylation in organic synthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.3c03181DOI Listing

Publication Analysis

Top Keywords

radical allyl
12
allyl transfer
12
quaternary carbon
8
carbon synthesis
4
synthesis titanocene
4
titanocene catalyzed
4
catalyzed radical
4
allyl
4
transfer epoxides
4
epoxides versatile
4

Similar Publications

Photocrosslinkable formulations based on the radical thiol-ene reaction are considered better alternatives than methacrylated counterparts for light-based fabrication processes. This study quantifies differences between thiol-ene and methacrylated crosslinked hydrogels in terms of precursors stability, the control of the crosslinking process, and the resolution of printed features particularized for hyaluronic acid (HA) inks at concentrations relevant for bioprinting. First, the synthesis of HA functionalized with norbornene, allyl ether, or methacrylate groups with the same molecular weight and comparable degrees of functionalization is presented.

View Article and Find Full Text PDF

The [1,2]-rearrangement of allylic ammonium ylides is traditionally observed as a competitive minor pathway alongside the thermally allowed [2,3]-sigmatropic rearrangement. Concerted [1,2]-rearrangements are formally forbidden, with these processes believed to proceed through homolytic C-N bond fission of the ylide, followed by radical-radical recombination. The challenges associated with developing a catalytic enantioselective [1,2]-rearrangement of allylic ammonium ylides therefore lie in biasing the reaction pathway to favor the [1,2]-reaction product, alongside controlling a stereoselective radical-radical recombination event.

View Article and Find Full Text PDF

The electrochemically induced reaction between alkenes, bearing an allylic hydrogen atom, and -hydroxyphthalimide was investigated. Cross-dehydrogenative C-O coupling with phthalimide--oxyl radical, derived from -hydroxyphthalimide, occurs instead of oxidation of the allylic site, with the formation of a carbonyl group or functionalization of the double C=C bond. The discovered transformation proceeds in an undivided electrochemical cell equipped with a carbon felt anode and a platinum cathode.

View Article and Find Full Text PDF

This study presents the indium-mediated three-component radical Reformatsky-type allylation of --butanesulfinyl iminoester with 1,3-butadiene. This novel approach offers a rapid synthesis pathway to valuable homoallylic noncanonical amino acids, demonstrated with over 30 examples showing nice regio- and diastereoselectivity. Mechanism studies revealed that allylindium complexes served as key intermediates, formed through a single-electron reduction of allylic radicals by Indium species.

View Article and Find Full Text PDF

Smart polymer hydrogels with superior dye adsorption (brilliant green) characteristics were synthesized via free-radical polymerization by grafting acrylic acid segments onto allylated chitosan and inducing crosslinking with a trimethylolpropane triacrylate crosslinker. The synthesized adsorbents were characterized for their chemical structure (FT-IR and H NMR), thermal stability (TG/DTG), and morphological features (SEM). The adsorption capacity for brilliant green (934 mg/g) and water uptake (712 g/g) were determined using spectrophotometric and gravimetric methods, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!