Ultrasonic backscatter techniques are being developed to detect changes in bone caused by osteoporosis and other diseases. Backscatter measurements performed at peripheral skeletal sites such as the heel may place the interrogated region of bone tissue in the acoustic near field of the transducer. The purpose of this study is to investigate how measurements in the near field affect backscatter parameters used for ultrasonic bone assessment. Ultrasonic measurements were performed in a water tank using a planar 2.25 MHz transducer. Signals were acquired for five transducer-specimen distances: N/4, N/2, 3 N/4, N, and 5 N/4, where N is the near-field distance, a location that represents the transition from the near field to far field. Five backscatter parameters previously identified as potentially useful for ultrasonic bone assessment purposes were measured: apparent integrated backscatter, frequency slope of apparent backscatter (FSAB), frequency intercept of apparent backscatter, normalized mean of the backscatter difference, and backscatter amplitude decay constant. All five parameters depended on transducer-specimen distance to varying degrees with FSAB exhibiting the greatest dependence on distance. These results suggest that laboratory studies of bone should evaluate the performance of backscatter parameters using transducer-specimen distances that may be encountered clinically including distances where the ultrasonically interrogated region is in the near field of the transducer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/10.0022324 | DOI Listing |
Soil moisture is a key parameter for the exchange of substance and energy at the land-air interface, timely and accurate acquisition of soil moisture is of great significance for drought monitoring, water resource management, and crop yield estimation. Synthetic aperture radar (SAR) is sensitive to soil moisture, but the effects of vegetation on SAR signals poses challenges for soil moisture retrieval in areas covered with vegetation. In this study, based on Sentinel-1 SAR and Sentinel-2 optical remote sensing data, a coupling approach was employed to retrieval surface soil moisture over dense vegetated areas.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai 600036, India.
In the last decade, substantial progress has been made to improve the performance of optical gyroscopes for inertial navigation applications in terms of critical parameters such as bias stability, scale factor stability, and angular random walk (ARW). Specifically, resonant fiber optic gyroscopes (RFOGs) have emerged as a viable alternative to widely popular interferometric fiber optic gyroscopes (IFOGs). In a conventional RFOG, a single-wavelength laser source is used to generate counter-propagating waves in a ring resonator, for which the phase difference is measured in terms of the resonant frequency shift to obtain the rotation rate.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Laboratory of Target Microwave Properties, Deqing Academy of Satellite Applications, Deqing 313200, China.
Using microwave remote sensing to invert forest parameters requires clear canopy scattering characteristics, which can be intuitively investigated through scattering measurements. However, there are very few ground-based measurements on forest branches, needles, and canopies. In this study, a quantitative analysis of the canopy branches, needles, and ground contribution of Masson pine scenes in C-, X-, and Ku-bands was conducted based on a microwave anechoic chamber measurement platform.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Centrum Výzkumu Řež s.r.o., Hlavní 130, 250 68 Husinec-Řež, Czech Republic.
Fuel failure caused by fretting damage to cladding remains a relevant issue despite decades of research and development aimed at enhancing the physical parameters of fuel. This paper presents the results of experiments conducted at the Research Centre Řež on Zr-1%Nb alloy tube specimens covered with protective coatings made of chromium (Cr) and nitrogen (N) compounds. The experiments involved debris-fretting tests under dry conditions at room temperature as well as microscopic measurements of groove depths.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
Polycrystalline zinc oxide (ZnO) thin films were deposited on soda-lime glass substrates using the chemical spray pyrolysis method at 450 °C. The samples were irradiated with 8 keV H ions at three different fluences using a Colutron ion gun. The effects of the irradiation on the structural, morphological, and optical properties were studied with different techniques, including Rutherford Backscattering Spectrometry (RBS), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Ultraviolet and Visible Spectroscopy (UV-Vis).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!