Automated and reproducible cell identification in mass cytometry using neural networks.

Brief Bioinform

Centre for Immunobiology, Blizard Institute, School of Medicine and Dentistry, Barts and the London, UK.

Published: September 2023

The principal use of mass cytometry is to identify distinct cell types and changes in their composition, phenotype and function in different samples and conditions. Combining data from different studies has the potential to increase the power of these discoveries in diverse fields such as immunology, oncology and infection. However, current tools are lacking in scalable, reproducible and automated methods to integrate and study data sets from mass cytometry that often use heterogenous approaches to study similar samples. To address these limitations, we present two novel developments: (1) a pre-trained cell identification model named Immunopred that allows automated identification of immune cells without user-defined prior knowledge of expected cell types and (2) a fully automated cytometry meta-analysis pipeline built around Immunopred. We evaluated this pipeline on six COVID-19 study data sets comprising 270 unique samples and uncovered novel significant phenotypic changes in the wider immune landscape of COVID-19 that were not identified when each study was analyzed individually. Applied widely, our approach will support the discovery of novel findings in research areas where cytometry data sets are available for integration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10630086PMC
http://dx.doi.org/10.1093/bib/bbad392DOI Listing

Publication Analysis

Top Keywords

mass cytometry
12
data sets
12
cell identification
8
cell types
8
study data
8
cytometry
5
automated
4
automated reproducible
4
cell
4
reproducible cell
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!