Diabetic retinopathy is a common complication of diabetes that affects the eyes and can lead to severe vision loss or blindness if left untreated. Chronic hyperglycemia destroys the blood vessels in the retina, resulting in diabetic retinopathy. The damage can lead to leakage of fluid and blood into the retina, causing edema, hemorrhages, and ischemia. A thorough evaluation by an ophthalmologist is necessary to determine the most appropriate course of treatment for each patient with diabetic retinopathy. The article discusses various surgical treatment options for diabetic retinopathy, including vitrectomy, scleral buckling, epiretinal membrane peeling, retinal detachment repair, and the risk factors of diabetic retinopathy. These surgical techniques can help to address the underlying causes of vision loss and prevent further complications from developing or worsening. To avoid complications and maintain vision, this review emphasizes the significance of early detection and treatment of diabetic retinopathy. Patients with diabetic retinopathy can improve their eyesight and quality of life with the help of some surgical treatments. The article also highlights some case studies in the field of diabetic retinopathy.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0115733998252551231018080419DOI Listing

Publication Analysis

Top Keywords

diabetic retinopathy
36
diabetic
9
risk factors
8
treatment options
8
options diabetic
8
retinopathy
8
vision loss
8
retinopathy clinical
4
clinical features
4
features risk
4

Similar Publications

Introduction: Diabetic retinopathy is a significant microvascular disorder and the leading cause of vision impairment in working-age individuals. Hyperglycemia triggers retinal damage through mechanisms such as the polyol pathway and the accumulation of advanced glycation end products (AGEs). Inhibiting key enzymes in this pathway, aldose reductase (AR) and sorbitol dehydrogenase (SD), alongside preventing AGE formation, may offer therapeutic strategies for diabetic retinopathy and other vascular complications.

View Article and Find Full Text PDF

Retinopathy of prematurity (ROP) and diabetic retinopathy (DR) are ocular disorders in which a loss of retinal vasculature leads to ischemia followed by a compensatory neovascularization response. In mice, this is modeled using oxygen-induced retinopathy (OIR), whereby neonatal animals are transiently housed under hyperoxic conditions that result in central retina vessel regression and subsequent neovascularization. Using endothelial cell (EC)-specific gene deletion, we found that loss of two ETS-family transcription factors, ERG and FLI1, led to regression of OIR-induced neovascular vessels but failed to improve visual function, suggesting that relevant retinal damage occurs prior to and independently of neovascularization.

View Article and Find Full Text PDF

Context: The role of genetic factors in the development of diabetic retinopathy is evident from the fact that only 50% of patients with the non-proliferative type of diabetic retinopathy progress to proliferative diabetic retinopathy. Though the K469E polymorphism of the ICAM-1 (Intercellular Adhesion Molecule-1) gene is known to increase the risk of developing Diabetic Retinopathy (DR) among Type 2 diabetic patients, its role in the development of severe DR has not been extensively studied.

Aim: Hence, we aimed to determine the risk due to association of K469E polymorphism of ICAM-1 gene and sight threatening diabetic retinopathy.

View Article and Find Full Text PDF

Identification of macrophage polarisation and mitochondria-related biomarkers in diabetic retinopathy.

J Transl Med

January 2025

Ophthalmic Center, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.

Background: The activation of macrophages or microglia in patients' whole body or local eyes play significant roles in diabetic retinopathy (DR). Mitochondrial function regulates the inflammatory polarization of macrophages. Therefore, the common mechanism of mitochondrial related genes (MRGs) and macrophage polarisation related genes (MPRGs) in DR is explored in our study to illustrate the pathophysiology of DR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!