In perfusion MRI, image voxels form a spatially organized network of systems, all exchanging indicator with their immediate neighbors. Yet the current paradigm for perfusion MRI analysis treats all voxels or regions-of-interest as isolated systems supplied by a single global source. This simplification not only leads to long-recognized systematic errors but also fails to leverage the embedded spatial structure within the data. Since the early 2000s, a variety of models and implementations have been proposed to analyze systems with between-voxel interactions. In general, this leads to large and connected numerical inverse problems that are intractible with conventional computational methods. With recent advances in machine learning, however, these approaches are becoming practically feasible, opening up the way for a paradigm shift in the approach to perfusion MRI. This paper seeks to review the work in spatiotemporal modelling of perfusion MRI using a coherent, harmonized nomenclature and notation, with clear physical definitions and assumptions. The aim is to introduce clarity in the state-of-the-art of this promising new approach to perfusion MRI, and help to identify gaps of knowledge and priorities for future research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10962600PMC
http://dx.doi.org/10.1002/mrm.29906DOI Listing

Publication Analysis

Top Keywords

perfusion mri
24
approach perfusion
8
perfusion
6
mri
6
current status
4
status spatiotemporal
4
spatiotemporal analysis
4
analysis contrast-based
4
contrast-based perfusion
4
mri perfusion
4

Similar Publications

Magnetic resonance imaging (MRI) currently serves as the primary diagnostic method for glioma detection and monitoring. The integration of neurosurgery, radiation therapy, pathology, and radiology in a multi-disciplinary approach has significantly advanced its diagnosis and treatment. However, the prognosis remains unfavorable due to treatment resistance, inconsistent response rates, and high recurrence rates after surgery.

View Article and Find Full Text PDF

: The accurate and early distinction of glioblastomas (GBMs) from single brain metastases (BMs) provides a window of opportunity for reframing treatment strategies enabling optimal and timely therapeutic interventions. We sought to leverage physiologically sensitive parameters derived from diffusion tensor imaging (DTI) and dynamic susceptibility contrast (DSC)-perfusion-weighted imaging (PWI) along with machine learning-based methods to distinguish GBMs from single BMs. : Patients with histopathology-confirmed GBMs ( = 62) and BMs ( = 26) and exhibiting contrast-enhancing regions (CERs) underwent 3T anatomical imaging, DTI and DSC-PWI prior to treatment.

View Article and Find Full Text PDF

Background: A patient with acute myeloid leukemia (AML) presented with a cardiac mass of unknown nature. This case underscores the importance of careful monitoring and a multidisciplinary approach in managing and differentiation of rare cardiac complications in leukemia patients. It aims to improve diagnostic accuracy and therapeutic outcomes in similar challenging scenarios.

View Article and Find Full Text PDF

Dobutamine-induced alterations in internal carotid artery blood flow and cerebral blood flow in healthy adults.

Brain Res Bull

January 2025

Department of Radiology, Beijing Friendship Hospital, Capital Medical University, 100050, Beijing, China; Precision and Intelligence Medical Imaging Lab, Beijing Friendship Hospital, Capital Medical University, 100050, Beijing, China. Electronic address:

Purpose: Dobutamine, a sympathomimetic agent, is widely used clinically, influencing cardiac output, heart rate (HR), and blood pressure (BP), which may impact cerebral blood flow (CBF), critical for brain metabolism. However, the effects of dobutamine on CBF and internal carotid artery (ICA) blood flow remain unclear, with contradictory reported in both clinical and animal studies. It is necessary to investigate the effects of dobutamine on cervical and cerebral hemodynamics.

View Article and Find Full Text PDF

Multiparametric MRI is a promising technique for noninvasive structural and functional imaging of the kidneys that is gaining increasing importance in clinical research. Still, there are no standardized recommendations for analyzing the acquired images and there is a need to further evaluate the accuracy and repeatability of currently recommended MRI parameters. The aim of the study was to evaluate the test-retest repeatability of functional renal MRI parameters using different image analysis strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!