Is the BNT162b2 vaccine still effective against the latest variant: XBB.1.5?

Niger J Clin Pract

DESAM Research Institute, Near East University, Nicosia, Cyprus.

Published: October 2023

Background: The XBB.1.5 sub-variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron now continues to spread rapidly due to the increased transmission rate as a result of increased affinity of the virus binding over the ACE-2 receptor - a gained property due to the mutation that occurred in spike protein.

Aim: The protectivity of BNT162b2 antibodies produced in the serum of patients is an important parameter for preventing transmission. However, the affinity of the antibodies of patients vaccinated with BNT162b2 over the latest SARS-CoV-2 variant, XBB.1.5, is not well established. This study aimed to evaluate the efficacy of the BNT162b2 vaccine-induced antibody on XBB.1.5 by comparing the X-ray crystallographic structures and spike protein mutations of BA.5 and XBB.1.5 using in silico methods.

Materials And Methods: Binding points and binding affinity values of the BNT162b2 antibody with BA.5 and XBB.1.5 spike protein were calculated using ClusPro 2.0 protein-protein docking and Discovery Studio 2021 Client software. Mutations in the genetic code of the spike protein for SARS-CoV-2 BA.5 and XBB.1.5 sub-variants were screened using the GISAID database.

Results: Binding affinity values showed that BNT162b2 had higher negative values in the XBB.1.5 sub-variant than BA.5 at the mutation sites at the binding region. The results suggested that BNT162b2 may retain its activity despite mutations and conformational changes in the binding site of the XBB.1.5.

Conclusion: The findings of this study shed light on the importance and usability of the current BNT162b2 vaccine for XBB.1.5 and future variants of concern.

Download full-text PDF

Source
http://dx.doi.org/10.4103/njcp.njcp_208_23DOI Listing

Publication Analysis

Top Keywords

spike protein
12
ba5 xbb15
12
bnt162b2
8
bnt162b2 vaccine
8
xbb15
8
xbb15 sub-variant
8
binding affinity
8
affinity values
8
values bnt162b2
8
binding
6

Similar Publications

We identified seven distinct coronaviruses (CoVs) in bats from Brazil, classified into 229E-related (Alpha-CoV), Nobecovirus, Sarbecovirus, and Merbecovirus (Beta-CoV), including one closely related to MERS-like CoV with 82.8% genome coverage. To accomplish this, we screened 423 oral and rectal swabs from 16 different bat species using molecular assays, RNA sequencing, and evolutionary analysis.

View Article and Find Full Text PDF

Porcine deltacoronavirus (PDCoV), also known as HKU15, is a swine enteropathogenic virus that is believed to have originated in birds. PDCoV belongs to the genus Deltacoronavirus (DCoV), the members of which have mostly been identified in diverse avian species. We recently reported that chicken or porcine aminopeptidase N (APN), the major cellular receptor for PDCoV, can mediate cellular entry via three pseudotyped retroviruses displaying spike proteins from three avian DCoVs (HKU11, HKU13, and HKU17).

View Article and Find Full Text PDF

Neutralizing antibody immune correlates in COVAIL trial recipients of an mRNA second COVID-19 vaccine boost.

Nat Commun

January 2025

Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Neutralizing antibody titer has been a surrogate endpoint for guiding COVID-19 vaccine approval and use, although the pandemic's evolution and the introduction of variant-adapted vaccine boosters raise questions as to this surrogate's contemporary performance. For 985 recipients of an mRNA second bivalent or monovalent booster containing various Spike inserts [Prototype (Ancestral), Beta, Delta, and/or Omicron BA.1 or BA.

View Article and Find Full Text PDF

Genetic variation in the α5 nicotinic acetylcholine receptor (nAChR) subunit of mice results in behavioral deficits linked to the prefrontal cortex (PFC). rs16969968 is the primary Single Nucleotide Polymorphism (SNP) in CHRNA5 strongly associated with nicotine dependence and schizophrenia in humans. We performed single cell-electrophysiology combined with morphological reconstructions on layer 6 (L6) excitatory neurons in the medial PFC (mPFC) of wild type (WT) rats, rats carrying the human coding polymorphism rs16969968 in Chrna5 and α5 knockout (KO) rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!