AI Article Synopsis

Article Abstract

This study was dedicated to introducing a new method for predicting the Sauter mean diameter (SMD) buildup in the swirl cup airblast fuel injector. There have been considerable difficulties with predicting SMD mainly because of complicated flow characteristics in a spray. Therefore, the backpropagation (BP) neural network-based machine learning was applied for the prediction of SMD as a function of geometry, condition parameters, and axial distance such as primary swirl number, secondary swirl number, venturi angle, mass flow rate of fuel, and relative air pressure. SMD was measured by a phase Doppler particle analyzer (PDPA). The results show that the prediction accuracy of the trained BP neural network was excellent with a coefficient of determination () score of 0.9599, root mean square error (RMSE) score of 1.4613, and overall relative error within 20%. Through sensitivity analysis, the relative air pressure drop and primary swirl number were the largest and smallest factors affecting the value of SMD, respectively. Finally, the prediction accuracy of the BP neural network model is far greater than the current prediction correlations. Moreover, for the predicting target in the present study, the BP neural network shows the advantages of a simple structure and short running time compared with PSO-BP and GRNN. All these prove that the BP neural network is a novel and effective way to predict the SMD of droplets generated by a swirl cup airblast fuel injector.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10620779PMC
http://dx.doi.org/10.1021/acsomega.3c03232DOI Listing

Publication Analysis

Top Keywords

neural network
20
swirl cup
12
cup airblast
12
airblast fuel
12
fuel injector
12
swirl number
12
predicting sauter
8
sauter diameter
8
backpropagation neural
8
network model
8

Similar Publications

[This retracts the article DOI: 10.1007/s00500-023-08073-4.].

View Article and Find Full Text PDF

[This retracts the article DOI: 10.1007/s00500-022-07122-8.].

View Article and Find Full Text PDF

Evaluating Machine Learning and Deep Learning models for predicting Wind Turbine power output from environmental factors.

PLoS One

January 2025

Renewable Energy Science and Engineering Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt.

This study presents a comprehensive comparative analysis of Machine Learning (ML) and Deep Learning (DL) models for predicting Wind Turbine (WT) power output based on environmental variables such as temperature, humidity, wind speed, and wind direction. Along with Artificial Neural Network (ANN), Long Short-Term Memory (LSTM), Recurrent Neural Network (RNN), and Convolutional Neural Network (CNN), the following ML models were looked at: Linear Regression (LR), Support Vector Regressor (SVR), Random Forest (RF), Extra Trees (ET), Adaptive Boosting (AdaBoost), Categorical Boosting (CatBoost), Extreme Gradient Boosting (XGBoost), and Light Gradient Boosting Machine (LightGBM). Using a dataset of 40,000 observations, the models were assessed based on R-squared, Mean Absolute Error (MAE), and Root Mean Square Error (RMSE).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!