Nanodiamonds (ND) are chemically inert and stable owing to their sp covalent bonding structure, but their surface sp graphitic carbons can be easily homogenized with diverse functional groups oxidation, reduction, hydrogenation, amination, and halogenation. Further surface conjugation of NDs with hydrophilic ligands can boost their colloidal stability and functionality. In addition, NDs are non-toxic as they are made of carbons. They exhibit stable fluorescence without photobleaching. They also possess paramagnetic and ferromagnetic properties, making them suitable for use as a new type of fluorescence imaging (FI) and magnetic resonance imaging (MRI) probe. In this review, we focused on recently developed ND production methods, surface homogenization and functionalization methods, biocompatibilities, and biomedical imaging applications as FI and MRI probes. Finally, we discussed future perspectives.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10623544PMC
http://dx.doi.org/10.1039/d3ra06837dDOI Listing

Publication Analysis

Top Keywords

production surface
4
surface modification
4
modification physicochemical
4
physicochemical properties
4
properties biocompatibility
4
biocompatibility bioimaging
4
bioimaging applications
4
applications nanodiamonds
4
nanodiamonds nanodiamonds
4
nanodiamonds chemically
4

Similar Publications

Adsorption properties and mechanisms of Cd by co-pyrolysis composite material derived from peanut biochar and tailing waste.

Environ Geochem Health

January 2025

College of Resource and Environmental Engineering, Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resource, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China.

Cadmium (Cd) contamination in aquatic systems is a widespread environmental issue. In this study, a solid waste iron tailings and biochar hybrid (Fe-TWBC) was successfully synthesized derived from co-pyrolysis of peanut shell and tailing waste (Fe-TW). Characterization analyses showed that the metal oxides from solid waste iron tailings successfully loaded onto the biochar surface, with more functional groups in Fe-TWBC.

View Article and Find Full Text PDF

This systematic study delves into the synthesis and characterization of robust bi-functional aminopropyl-tagged periodic mesoporous organosilica with a high loading of small imidazolium bridges in its framework (PrNH@R-PMO-IL, ∼2 mmol g of IL). The materials proved to be a reliable and enduring support for the immobilization of Ru species, demonstrating strong performance and excellent selectivity in the -bromination of various derivatives of 2-phenylpyridine compounds and other heterocycles, showcasing its effectiveness and robust nature. The synthesized materials were thoroughly characterized to determine their structural properties, such as pore size distribution, loading of organic groups, and surface area, using various analytical techniques.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Department of Neurology, Mayo Clinic, Rochester, MN, USA.

Background: While disease-modifying treatments that reduce Aβ have been recently approved by the FDA, the identification of novel therapeutic targets and strategies that target underlying mechanisms to delay the AD development are still needed. Abnormal brain energy homeostasis and mitochondria dysfunction are observed early in AD. Therefore, the development of treatments to restore these defects could be beneficial.

View Article and Find Full Text PDF

SORL1 (SORLA, LR11) is a large (2214 residue), multi-domain type 1 integral membrane protein that is the product of the SORL1 gene. In neurons, where it is highly expressed, SORL1 functions as both a substrate of and a cargo receptor for the retromer multi protein complex that is a master regulator of protein trafficking out of the early endosome. The SORL1-Vps26b retromer, in particular, is dedicated to the recycling of cell surface proteins, including APP and AMPA receptor subunit GLUA1, back to the plasma membrane.

View Article and Find Full Text PDF

Background: An explicit molecular level understanding of Alzheimer's Disease (AD) remains elusive. What initiates the disease and why does it progress? Answering these questions will be crucial to the development of much needed new diagnostics and therapeutics. Though the amyloid hypothesis is often debated, recent biologic trial results support a role for Aβ in AD pathogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!