Objective: Case reports, tissue pathology, and autopsies have suggested that the hydrophilic polymer coating designed to improve endovascular deliverability and minimize vessel trauma can embolize and be associated with adverse outcomes such as ischemia, infarction, and death. This study sought to determine whether hydrophilic polymers shed off commercially available sheaths in a controlled in vitro environment, with the hypothesis that significant differences between coated and uncoated (control) sheaths would be found.

Methods: Six sheaths from each manufacturer, including Zenith Alpha abdominal endovascular stent grafts (Cook Medical), DrySeal sheaths (W.L. Gore & Associates), and Sentrant Introducer sheaths (Medtronic), were tested in an in vitro environment. Noncoated Check-Flo performer introducer sheaths (Cook Medical) were used as controls. Each test circuit ran for 150 minutes at an output of 3 L/min, the circuit was then drained and the fluid collected. Quantitative analysis included weighing the dried filter paper and using particle size light scattering to quantify the particle size and count. Attenuated total reflectance spectroscopy was also used.

Results: Each of the three coated sheaths had significantly greater shedding compared with the control sheaths. The Cook Zenith alpha sheath had significantly more residue weight (2.87 ± 0.52 mg/L) than the Gore DrySeal (1.07 ± 0.06 mg/L) and Medtronic Sentrant introducer (0.98 ± 0.14 mg/L) sheaths. The average particle size was not significantly different between the coated and uncoated (control) sheaths. Attenuated total reflectance spectroscopy identified sheath particulate in the Cook Zenith Alpha and Medtronic Sentrant samples.

Conclusions: Polymer embolization was present and significantly greater in all three commercially available hydrophilic sheaths compared with the control group. Further investigation is needed into the clinical significance of these findings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10624583PMC
http://dx.doi.org/10.1016/j.jvssci.2023.100127DOI Listing

Publication Analysis

Top Keywords

control sheaths
12
zenith alpha
12
particle size
12
sheaths
11
hydrophilic polymer
8
polymer embolization
8
in vitro environment
8
coated uncoated
8
uncoated control
8
cook medical
8

Similar Publications

Sheath blight, caused by AG1 IA, is a challenging disease of rice worldwide. In the current study, nine isolates, within the anastomosis group AG-1 IA, were isolated, characterized based on their macroscopic and microscopic features, as well as their ability to produce cell wall degrading enzymes (CWDEs), and further molecularly identified via ITS sequencing. Although all isolates were pathogenic and produced typical sheath blight symptoms the susceptible rice cultivar, Sakha 101, AG1 IA -isolate SHBP9 was the most aggressive isolate.

View Article and Find Full Text PDF

Spinal cord injury (SCI) leads to permanent motor and sensory loss that is exacerbated by intraspinal inflammation and persists months to years after injury. After SCI, monocyte-derived macrophages (MDMs) infiltrate the lesion to aid in myelin-rich debris clearance. During debris clearance, MDMs adopt a proinflammatory phenotype that exacerbates neurodegeneration and hinders recovery.

View Article and Find Full Text PDF

Background: Left bundle branch (LBB) pacing (P) has gained rapid adoption. Evidence for direct LBB capture has varied from 30-95% depending on the criteria.

Objective: The aim of the study was to assess the feasibility and efficacy of intraprocedural transthoracic echo guidance to achieve LBB capture.

View Article and Find Full Text PDF

Carbon-based nanofibers are critical materials with broad applications in industries such as energy, filtration, and biomedical devices. Polyacrylonitrile (PAN) is a primary precursor for carbon nanofibers, but conventional electrospinning techniques typically operate at low production rates of 0.1-1 mL/h from a single spinneret, limiting scalability.

View Article and Find Full Text PDF

Experimental studies of major depressive disorder (MDD) and stress reveal connectivity disturbances of the prefrontal cortex (PFC) that may involve molecular and morphological changes in myelin and the axons it enwraps. These alterations may also affect the nodes of Ranvier (NR), myelin-bare axon stretches along myelin sheaths necessary for action potential propagation, as well as the paranodes, specialized regions of the myelin sheath flanking NRs. Thus, we investigated whether paranode length and the labeling of paranode marker CASPR in PFC white matter (WM) differed in MDD subjects and chronic stress-exposed rats, as compared to their respective controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!