Some thermophilic bacteria from deep-sea hydrothermal vents grow by dissimilatory iron reduction, but our understanding of their biogenic mineral transformations is nascent. Mineral transformations catalyzed by the thermophilic iron-reducing bacterium during growth at 55°C were examined using synthetic nanophase ferrihydrite, akaganeite, and lepidocrocite separately as terminal electron acceptors. Spectral analyses using visible-near infrared (VNIR), Fourier-transform infrared attenuated total reflectance (FTIR-ATR), and Mössbauer spectroscopies were complemented with x-ray diffraction (XRD) and transmission electron microscopy (TEM) using selected area electron diffraction (SAED) and energy dispersive X-ray (EDX) analyses. The most extensive biogenic mineral transformation occurred with ferrihydrite, which produced a magnetic, visibly dark mineral with spectral features matching cation-deficient magnetite. also grew on akaganeite and lepidocrocite and produced non-magnetic, visibly dark minerals that were poorly soluble in the oxalate solution. Bioreduced mineral products from akaganeite and lepidocrocite reduction were almost entirely absorbed in the VNIR spectroscopy in contrast to both parent minerals and the abiotic controls. However, FTIR-ATR and Mössbauer spectra and XRD analyses of both biogenic minerals were almost identical to the parent and control minerals. The TEM of these biogenic minerals showed the presence of poorly crystalline iron nanospheres (50-200 nm in diameter) of unknown mineralogy that were likely coating the larger parent minerals and were absent from the controls. The study demonstrated that thermophilic bacteria transform different types of Fe(III) (oxyhydr)oxide minerals for growth with varying mineral products. These mineral products are likely formed through dissolution-reprecipitation reactions but are not easily predictable through chemical equilibrium reactions alone.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10622975PMC
http://dx.doi.org/10.3389/fmicb.2023.1272245DOI Listing

Publication Analysis

Top Keywords

akaganeite lepidocrocite
12
mineral products
12
feiii oxyhydroxide
8
thermophilic iron-reducing
8
iron-reducing bacterium
8
thermophilic bacteria
8
biogenic mineral
8
mineral transformations
8
ftir-atr mössbauer
8
visibly dark
8

Similar Publications

Oxygen adsorption and activation control the photochemical activity of common iron oxyhydroxide polymorphs in mediating oxytetracycline degradation under visible light.

J Colloid Interface Sci

December 2024

MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China. Electronic address:

The natural minerals with semiconducting properties possess photochemical activity through generating reactive oxygen species (ROSs) and affect the fate of adsorbed organic pollutants. Iron oxyhydroxides occur in different polymorphic structures under various geological and climatic conditions in natural environment. However, the difference in their photoactivity has not been well understood.

View Article and Find Full Text PDF

The screening of iron oxides for long-term transformation into vivianite to recover phosphorus from sewage.

Water Res

November 2024

School of Environmental Science and Engineering, Tianjin University, No. 135 Yaguan Road, Jinnan District, Tianjin, 300350, China. Electronic address:

The reducibility of iron oxides, depending on their properties, influences the kinetics of dissimilatory iron reduction (DIR) during vivianite recovery in sewage. This study elucidated the correlation between properties of iron oxides and kinetics of DIR during the long-term transformation into vivianite, mediated by Geobacter sulfurreducens PCA and sewage. The positive correlation between surface reactivity of iron oxides and reduction rate constant (k) influenced the terminal vivianite recovery efficiency.

View Article and Find Full Text PDF

Some thermophilic bacteria from deep-sea hydrothermal vents grow by dissimilatory iron reduction, but our understanding of their biogenic mineral transformations is nascent. Mineral transformations catalyzed by the thermophilic iron-reducing bacterium during growth at 55°C were examined using synthetic nanophase ferrihydrite, akaganeite, and lepidocrocite separately as terminal electron acceptors. Spectral analyses using visible-near infrared (VNIR), Fourier-transform infrared attenuated total reflectance (FTIR-ATR), and Mössbauer spectroscopies were complemented with x-ray diffraction (XRD) and transmission electron microscopy (TEM) using selected area electron diffraction (SAED) and energy dispersive X-ray (EDX) analyses.

View Article and Find Full Text PDF

Low intensity magnetic separation of vivianite induced by iron reduction on the surface layer of Fe(III)[Fe(0)] iron scrap.

Environ Res

January 2024

School of Environmental Science and Engineering, Tianjin University, No.92 Weijin Road, Nankai District, Tianjin, 300072, China. Electronic address:

Phosphorus (P) recovery through vivianite, which can be found in activated sludge, surplus sludge and digested sludge in the wastewater treatment plants (WWTPs), is a cutting-edge and efficient technology in recent years. However, how to generate and separate vivianite in an effective and economical way with natural iron oxide mineral was still the bottleneck to limit its application. Therefore, in this study, the P recovery efficiency (E) and vivianite recovery efficiency (E) of three kinds of iron oxides were investigated.

View Article and Find Full Text PDF

Chromium(III) adsorption removal from acidic solutions by isomeric and tunnel-structural iron oxyhydroxides.

Water Sci Technol

March 2023

College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, People's Republic of China E-mail:

Iron oxyhydroxides for heavy metal treatment have attracted wide attention. In this work, iron oxyhydroxides of isomeric FeOOH (GpI) and tunnel-structural schwertmannite/akaganéite (GpII) were selected to study chromium (Cr(III)) adsorption removal from acidic aqueous solutions by batch experiments, under various reaction time, adsorbate/adsorbent level, pH and anions. Adsorption processes well fitted to pseudo-second-order kinetics (R = 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!