Glycosyl hydrolase from inhibits the biofilm formation of .

Biofilm

State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China.

Published: December 2023

Biofilms are complex microbial communities embedded in extracellular matrix. Pathogens within the biofilm become more resistant to the antibiotics than planktonic counterparts. Novel strategies are required to encounter biofilms. Exopolysaccharides are one of the major components of biofilm matrix and play a vital role in biofilm architecture. In previous studies, a glycosyl hydrolase, PslG, from was found to be able to inhibit biofilm formation by disintegrating exopolysaccharide in biofilms. Here, we investigate the potential spectrum of PslG homologous protein with anti-biofilm activity. One glycosyl hydrolase from , PslG, exhibits anti-biofilm activities and the key catalytic residues of PslG are conserved with those of PslG. PslG at concentrations as low as 50 nM efficiently inhibits the biofilm formation of and disassemble its preformed biofilm. Furthermore, PslG exhibits anti-biofilm activity on a series of , including and pv. . PslG stays active under various temperatures. Our findings suggest that glycosyl hydrolase PslG has potential to be a broad spectrum inhibitor on biofilm formation of a wide range of .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10622837PMC
http://dx.doi.org/10.1016/j.bioflm.2023.100155DOI Listing

Publication Analysis

Top Keywords

glycosyl hydrolase
16
biofilm formation
16
hydrolase pslg
12
pslg
9
biofilm
8
inhibits biofilm
8
anti-biofilm activity
8
pslg exhibits
8
exhibits anti-biofilm
8
glycosyl
4

Similar Publications

Decrypting the phylogeny and metabolism of microbial dark matter in green and red Antarctic snow.

ISME Commun

January 2025

State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.

Antarctic snow harbors diverse microorganisms, including pigmented algae and bacteria, which create colored snow patches and influence global climate and biogeochemical cycles. However, the genomic diversity and metabolic potential of colored snow remain poorly understood. We conducted a genome-resolved study of microbiomes in colored snow from 13 patches (7 green and 6 red) on the Fildes Peninsula, Antarctica.

View Article and Find Full Text PDF

Natural products and their derivatives are precious resources with extensive applications in various industrial fields. Enzymatic glycosylation is an efficient approach for chemical structure diversification and biological activity alternation of natural products. Herein, we reported a stereoselective glycosylation of complex natural product glycosides catalyzed by two carbohydrate-active enzymes (CAZys).

View Article and Find Full Text PDF

: Genomic Diversity and Structure.

Pathogens

January 2025

Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.

is the causative agent of Chagas disease, a neglected tropical disease, and one of the most important parasitic diseases worldwide. The first genome of was sequenced in 2005, and its complexity made assembly and annotation challenging. Nowadays, new sequencing methods have improved some strains' genome sequence and annotation, revealing this parasite's extensive genetic diversity and complexity.

View Article and Find Full Text PDF

Phenylethanoid glycosides (PhGs) are widely occurring secondary metabolites of medicinal plants with interesting biological activities such as antioxidant, anti-inflammatory, neuroprotective, antiviral, hepatoprotective, immunomodulatory, etc. They are characterized by a structural core formed by a phenethyl alcohol, usually tyrosol or hydroxytyrosol, attached to β-D-glucopyranose via a glycosidic bond. This core is usually further decorated by attached phenolic acids or another saccharide.

View Article and Find Full Text PDF

The antifungal targets of the new fungicide -(naphthalen-1-yl)-phenazine-1-carboxamide (NNPCN) are still incomplete, limiting its application. To identify potential new targets of NNPCN and facilitate target hunting, a suite of techniques was employed to conduct experiments on . Nine potential targets were identified, exhibiting strong binding affinity to NNPCN, as indicated by binding free energies below -100.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!