A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The impact of the federal menu labeling law on the sentiment of Twitter discussions about restaurants and food retailers: An interrupted time series analysis. | LitMetric

The US federal menu labeling law, implemented on May 7 th 2018, required that restaurant chains post calorie counts on menu items. The purpose of this study was to analyze the change in public sentiment, using Twitter data, regarding eight restaurant chains before and after the calorie labeling law's implementation. Twitter data was mined from Twitter's application programming interface (API) for this study from the calendar year 2018; 2016 and was collected as a control. We selected restaurant chains that had a range of compliance dates with the law. Tweets about each chain were filtered by brand-specific keywords, and Valence Aware Dictionary and sEntiment Reasoner (VADER) sentiment analysis was applied to receive a continuous compound score (-1-1) of how positive (1) or negative (-1) each tweet was. Controlled Interrupted Time Series (CITS) was performed with Ordinary Least Squares (OLS) Regression on 2018 and 2016 series of compound scores for each brand, and level and trend changes were calculated. Most restaurant chains that implemented the federal menu calorie labeling law experienced no change or a small change in level or trend in sentiment after they implemented labeling. Chains experienced mildly more negative sentiment right after the law was implemented, with attenuation of this effect over time. Calorie labeling did not have a strong effect on the public's perception of food brands over the long-term on Twitter and may imply the need for greater efforts to change the sentiment towards unhealthy restaurant chains.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10622709PMC
http://dx.doi.org/10.1016/j.pmedr.2023.102478DOI Listing

Publication Analysis

Top Keywords

restaurant chains
20
federal menu
12
labeling law
12
menu labeling
8
sentiment twitter
8
interrupted time
8
time series
8
law implemented
8
calorie labeling
8
2018 2016
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!