Is vestibular function related to human hippocampal volume?

J Vestib Res

Faculty of Medicine and Health Sciences, Experimental Laboratory of Translational Neurosciences and Dento-Otolaryngology, University of Antwerp, Belgium.

Published: February 2024

AI Article Synopsis

  • Recent studies suggest that vestibular loss may contribute to cognitive decline and hippocampal volume loss, linking it to Alzheimer's disease risk.
  • This research aimed to compare MRI brain volumes of adults with bilateral vestibulopathy (BV) to matched controls and examine if otolith function affects hippocampal volume.
  • Findings revealed no significant differences in brain or hippocampal volumes between BV participants and controls, indicating vestibular dysfunction may not directly impact hippocampal atrophy.

Article Abstract

Background: Recent studies implicate the effect of vestibular loss on cognitive decline, including hippocampal volume loss. As hippocampal atrophy is an important biomarker of Alzheimer's disease, exploring vestibular dysfunction as a risk factor for dementia and its role in hippocampal atrophy is of interest.

Objective: To replicate previous literature on whole-brain and hippocampal volume in semicircular canal dysfunction (bilateral vestibulopathy; BV) and explore the association between otolith function and hippocampal volume.

Methods: Hippocampal and whole-brain MRI volumes were compared in adults aged between 55 and 83 years. Participants with BV (n = 16) were compared to controls individually matched on age, sex, and hearing status (n = 16). Otolith influence on hippocampal volume in preserved semicircular canal function was evaluated (n = 34).

Results: Whole-brain and targeted hippocampal approaches using volumetric and surface-based measures yielded no significant differences when comparing BV to controls. Binary support vector machines were unable to classify inner ear health status above chance level. Otolith parameters were not associated with hippocampal volume in preserved semicircular canal function.

Conclusions: No significant differences in whole-brain or hippocampal volume were found when comparing BV participants with healthy controls. Saccular parameters in subjects with preserved semicircular canal function were not associated with hippocampal volume changes.

Download full-text PDF

Source
http://dx.doi.org/10.3233/VES-230076DOI Listing

Publication Analysis

Top Keywords

hippocampal volume
24
semicircular canal
16
hippocampal
12
preserved semicircular
12
hippocampal atrophy
8
whole-brain hippocampal
8
volume preserved
8
canal function
8
associated hippocampal
8
volume
6

Similar Publications

Background: Alzheimer's disease (AD) frequently coexists with cerebral small vessel disease (CSVD) is common in the aging population, yet the underlying mechanisms are not yet fully understood. Both long-term blood pressure variability (BPV) and plasma neurofilament light (PNFL) were identified as potential biomarkers for AD and CSVD. This study aims to understand the mechanisms of comorbidity between AD and CSVD by investigating the associations among BPV, PNFL, and comorbidity.

View Article and Find Full Text PDF

Background: White matter hyperintensities (WMH) are commonly observed on MRI in Alzheimer's disease (AD), but the molecular pathways underlying their relationships with the ATN biomarkers remain unclear. The aim of this study was to identify genetic variants that may modify the relationship between WMH and the ATN biomarkers.

Method: This genome-wide interaction study (GWIS) included individuals with AD, MCI, and normal cognition from ADNI (n = 1012).

View Article and Find Full Text PDF

Background: The mesolimbic system plays a crucial role in weight regulation and cognition. Previous studies suggest that the pathology of Alzheimer's disease (AD) can lead to the atrophy of the mesolimbic system and body mass index (BMI) decline. It remains unknown whether BMI is associated with the the mesolimbic system in AD.

View Article and Find Full Text PDF

Background: Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) denotes TDP-43 deposition in older age and is consequential for cognitive function. Currently there is no way to identify LATE-NC during life. Some forms of TDP-43 deposition in younger age, related to frontotemporal dementia (FTD), are associated with pronounced asymmetrical atrophy of the temporal lobe.

View Article and Find Full Text PDF

Background: We previously identified the novel mechanism of pathological tau transfer via extracellular vesicles (EVs) in Alzheimer's disease (AD). Targeting EV secretion to mitigate tau transfer is therefore a promising therapeutic approach for AD. P2X purinoreceptor 7 (P2RX7), an ATP-gated cationic channel, regulates microvesicle shedding or secretion of multivesicular body-derived exosomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!