Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Endothelial cells (ECs) experience two different blood flow patterns: laminar and disturbed flow. Their responses to laminar flow contribute to vascular homeostasis, whereas their responses to disturbed flow result in EC dysfunction and vascular diseases. However, it remains unclear how ECs differentially sense laminar and disturbed flow and trigger signaling that elicits different responses. Here, we showed that ECs differentially sense laminar and disturbed flows by altering the lipid order of their plasma and mitochondrial membranes in opposite directions. This results in distinct changes in mitochondrial function, namely, increased adenosine triphosphate (ATP) production for laminar flow and increased hydrogen peroxide (HO) release for disturbed flow, leading to ATP- and HO-mediated signaling, respectively. When cultured human aortic ECs were subjected to laminar or disturbed flow in flow-loading devices, the lipid order of their plasma membranes immediately decreased in response to laminar flow and increased in response to disturbed flow. Laminar flow also decreased the lipid order of mitochondrial membranes and increased mitochondrial ATP production. In contrast, disturbed flow increased the lipid order of mitochondrial membranes and increased the release of HO from the mitochondria. The addition of cholesterol to the cells increased the lipid order of both membranes and abrogated laminar flow-induced ATP production, while treatment of the cells with a cholesterol-depleting reagent, methyl-β cyclodextrin, decreased the lipid order of both membranes and abolished disturbed flow-induced HO release, indicating that changes in the membrane lipid order and/or cholesterol content are closely linked to flow-induced changes in mitochondrial functions. How vascular endothelial cells (ECs) differentially sense laminar and disturbed flows and trigger intracellular signaling remains unclear. Here, we show that EC plasma membranes act as mechanosensors to discriminate between laminar and disturbed flows by undergoing opposite changes in their lipid order. Similar lipid order changes occur simultaneously in the mitochondrial membranes, which are linked to changes in mitochondrial function, that is, increased ATP production for laminar flow and increased HO release for disturbed flow.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10861177 | PMC |
http://dx.doi.org/10.1152/ajpcell.00393.2023 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!