Bacterial community driven nitrogen cycling in coastal sediments of intertidal transition zone.

Sci Total Environ

Institute of Intelligent Simulation and Early Warning for Subsurface Environment, Jilin University, Changchun 130026, China; College of Construction Engineering, Jilin University, Changchun 130026, China. Electronic address:

Published: January 2024

Microorganisms inhabiting in coastal sediments significantly affect the nitrogen cycling in coastal waters and ecosystems. However, the bacterial community that related to the key active nitrogen transformation processes in intertidal transition zone are still not understood. Across a long flat intertidal zone at depths from 0 to 3 m in Daya Bay, China, the bacterial communities in sediments and their driven nitrogen cycling potential were evaluated with environmental factors and 16S rRNA sequencing. The results showed that the intertidal zone is a divide for environmental factors as pH, salinity and C/N ratio, instead of an average shift from freshwater to salt water. At the same time, the environmental factors influenced the abundance of bacterial community related to nitrogen cycling. Across the intertidal zone, the dominant nitrogen transformation processes were different. At the high tide and middle tide sites, the primary nitrogen cycling process was nitrification that worked with Nitrosomonadaceae, Nitrospiraceae, 0319-6A21, and wb1-A12. At the low tide sites, nitrogen fixation was the dominant function conducted by Bradyrhizobiaceae. The reduction of nitrate was carried out with the help of Xanthomonadales but relatively weak in all sampling sites especially for low tide sites. This was mostly because the richness and evenness of bacterial community were the lowest at the low tide sites. Meanwhile, the pH, Cl, salinity, NH, NO and C/N ratio were the important factors that shaped the composition of local bacterial community. Further, the nonmetric multidimensional scaling results indicated that there were significant statistical differences in the composition of bacterial community among samples at different layers. The dominant nitrogen cycling processes in coastal sediments at different tide levels were revealed in this study, which offered an extended concept of nitrogen transformation along the groundwater discharge path in the intertidal transition zone. The distributions and compositions of bacterial communities and predicted functions provided a new insight for coastal environment and ecosystem management.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.168299DOI Listing

Publication Analysis

Top Keywords

bacterial community
24
nitrogen cycling
24
tide sites
16
coastal sediments
12
intertidal transition
12
transition zone
12
nitrogen transformation
12
intertidal zone
12
environmental factors
12
low tide
12

Similar Publications

Evaluating Nanotrap Microbiome Particles as A Wastewater Viral Concentration Method.

Food Environ Virol

January 2025

Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.

Wastewater-based surveillance has emerged as a powerful approach to monitoring infectious diseases within a community. Typically, wastewater samples are concentrated before viral analyses to improve sensitivity. Current concentration methods vary in time requirements, costs, and efficiency.

View Article and Find Full Text PDF

Aquilaria malaccensis Lam., an Agarwood-producing tree native to Southeast Asia, secretes oleoresin, a resin with diverse applications, in response to injuries. To explore the role of endosphere microbial communities during Agarwood development, we utilized a metagenomics approach across three stages: non-symptomatic (NC), symptomatic early (IN), and symptomatic mature (IN1).

View Article and Find Full Text PDF

Thermal sensitivity and niche plasticity of generalist and specialist leaf-endophytic bacteria in Mangrove Kandelia obovata.

Commun Biol

January 2025

Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Department of Oceanography, Key Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China.

Leaf endospheres harbor diverse bacterial communities, comprising generalists and specialists, that profoundly affect ecosystem functions. However, the ecological dynamics of generalist and specialist leaf-endophytic bacteria and their responses to climate change remain poorly understood. We investigated the diversity and environmental responses of generalist and specialist bacteria within the leaf endosphere of mangroves across China.

View Article and Find Full Text PDF

As conservation agricultural practices continue to spread, there is a need to understand how reduced tillage impacts soil microbes. Effects of no till (NT) and disk till (DT) relative to moldboard plow (MP) were investigated in a long-term experiment established on Chernozem. Results showed that conservation practices, especially NT, increased total, active and microbial biomass carbon.

View Article and Find Full Text PDF

Ecology and evolution are considered distinct processes that interact on contemporary time scales in microbiomes. Here, to observe these processes in a natural system, we collected a two-decade, 471-metagenome time series from Lake Mendota (Wisconsin, USA). We assembled 2,855 species-representative genomes and found that genomic change was common and frequent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!