The environmental assessment of urban water systems through life cycle analysis can be facilitated by using a modular approach. This study aimed to use such an approach to assess the impact of implementing rainwater harvesting systems in buildings in the urban environment during their lifespan, from manufacture to disposal. For this purpose, urban systems were divided into components (water treatment plant, potable water distribution, consumer water use, wastewater collection and wastewater treatment plant). The impacts were quantified using the ReCiPe 2016 H impact assessment method, which considers eighteen impact categories. A case study was carried out in the Belém river basin in central Curitiba, southern Brazil, to validate the method. The results showed a reduction of environmental impacts of up to 23.0 % on water treatment plants, up to 19.0 % on potable water distribution and up to 11.3 % on wastewater treatment plants with the implementation of rainwater harvesting systems. The consumer component was the most significant contributor in eight and seven impact categories in the scenarios with and without rainwater harvesting, respectively. Despite the increased infrastructure materials, the results showed potential for environmental impact reduction with rainwater harvesting, mainly in urban water systems' operation process (energy and chemicals consumption). By analysing the total impacts, implementing rainwater harvesting reduced the impacts in eleven out of eighteen impact categories analysed (up to 11.0 % reduction). The principal reductions occurred in ozone depletion, ionising radiation and water use. Finally, the modular life cycle assessment approach proved to be a comprehensive analysis, which can aid in the analysis and decision-making for different scenarios.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.168281 | DOI Listing |
J Environ Manage
January 2025
Politecnico di Milano, Department of Civil and Environmental Engineering, Italy. Electronic address:
Stormwater runoff control is often a concern due to urbanization and extreme rainfall events. Sustainable urban drainage systems can support traditional hydraulic networks in rainwater management by providing local runoff disposal and reuse of collected stormwater. The objective of the study is based on an innovative analytical-probabilistic approach for evaluating the functioning of rainwater tanks in stormwater management with the potential for using collected water for non-potable purposes.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Engineering, Design and Built Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
Rainwater harvesting (RWH) for drinking water production has been a potential solution to mitigate water scarcity in rural areas. There was limited research focusing on the quality of treated rainwater. This study developed and tested the quality of a drinking water filtration system (DWFS) for treating harvested rainwater to support rural communities.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station of Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, Guangxi, China. Electronic address:
In karst landscapes, where sustainable water management is increasingly challenged by drought-induced water scarcity, the adoption of road-based rainwater harvesting (RBWH) systems has emerged as a promising solution for improving water accessibility. Despite the growing implementation of such systems, the effectiveness of many RBWH projects in karst terrains remains suboptimal due to an inadequate understanding of runoff generation mechanisms associated with hilly road networks. This study focuses on quantifying the contributions of intercepted surface runoff (SR) and soil-epikarst lateral flow (SEF) from a newly exposed road-cut slope in a dolomite hillslope, with data collected across 156 rainfall events from May 2019 to May 2022.
View Article and Find Full Text PDFJ Environ Manage
January 2025
College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A&F University, Yangling, Shaanxi, 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, 712100, China; Institute of Water-saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling, Shaanxi, 712100, China.
Rainwater harvesting is a viable solution for providing clean water in regions where conventional water sources are scarce or contaminated. However, the harvested rainwater often contains microorganisms, suspended particles, and other impurities that must be removed before consumption. Gravity-driven ceramic membranes (GDCMs) are an efficient choice for purifying harvested rainwater due to their energy-saving properties.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Planning, University of Waterloo, 200 University Ave. West, Waterloo, ON N2L 3G1, Canada. Electronic address:
Climate change adaptation in intensifying urban environments benefit from green stormwater infrastructure (GSI) investments on private residential yards. Nevertheless, planners are challenged to devise policy tools to mesh such a decentralized GSI approach with current land-use and social systems. Prior research has addressed the multi-scalar socio-economic barriers hindering household uptake, including technical and governance considerations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!