Steroid biosynthesis and biotransformation are based on a cascade of enzymatic processes being highly sensitive to various external influences. Amongst those, ethanol was shown to affect testosterone metabolism. For doping analyses, athlete steroid profiles comprise seven urinary steroid metabolites, of which relevant ratios are significantly increased following ethanol consumption. This effect is presumably based on the lack of hepatic NAD-coenzyme as a consequence of ethanol oxidation. Only recently, testosterone (T) and androstenedione (A4) blood profiles have been introduced as additional approach for doping control. However, a potential influence of ethanol intake on testosterone biosynthesis and thus on blood steroid profiles has not been investigated so far. Therefore, steroid concentrations from 10 males and 10 females receiving an ethanol infusion up to a breath alcohol concentration of 0.5 mg/L which was hold as a plateau for two hours were conducted. Blood samples were drawn every 15 min for steroid quantification. An ethanol-dependent T/A4 increase up to 385% resulting from A4 suppression was observed in 14 volunteers. In addition, we observed sporadic A4 increases coinciding with cortisol and ACTH pulses pointing to a meal-induced adrenal stimulation. While testosterone levels in males showed diurnal variation solely, testosterone levels in some females were found to be susceptible to ethanol- and ACTH-dependent perturbations, which is thought to be due to its predominant adrenal synthesis in females. In conclusion, the results of the present study emphasize the importance of blood sampling at a sufficient time interval from food and ethanol intake. This is of interest if T and A4 are used for diagnostics in doping control.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.steroids.2023.109331 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, 17676 Athens, Greece.
Platelet aggregation and inflammation play a crucial role in atherothrombosis. Wine contains micro-constituents of proper quality and quantity that exert cardioprotective actions, partly through inhibiting platelet-activating factor (PAF), a potent inflammatory and thrombotic lipid mediator. However, wine cannot be consumed extensively due to the presence of ethanol.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Pharmaceutical Chemistry, National University of Pharmacy, 61168 Kharkiv, Ukraine.
The search for neuroprotective compounds in lavender is driven by its traditional use for brain health, with antioxidant activity serving as a key mechanism in reducing oxidative stress and supporting cognitive function. Lavender's potential to protect neurons is based on its calming, anti-stress properties, which increase the brain's resistance to neurodegeneration. Although lavender is not a traditional medicinal plant in Ukraine, it is increasingly recognised for its medicinal properties and is widely cultivated in the country.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Mechanical Engineering and Agrophysics, Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka Street 116 B, 30-149 Krakow, Poland.
One of the methods for obtaining zinc oxide nanoparticles (ZnO NPs) is electrochemical synthesis. In this study, the anodic dissolution process of metallic zinc in alcohol solutions of LiCl was used to synthesize ZnO NPs. The products were obtained as colloidal suspensions in an electrolyte solution.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy.
Alcohol is the second-most misused substance after tobacco. It has been identified as a causal factor in more than 200 diseases and 5.3% of all deaths and is associated with significant behavioral, social, and economic difficulties.
View Article and Find Full Text PDFBiomedicines
December 2024
Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
The global incidence and mortality rates of alcohol-related liver disease are on the rise, reflecting a growing health concern worldwide. Alcohol-related liver disease develops due to a complex interplay of multiple reasons, including oxidative stress generated during the metabolism of ethanol, immune response activated by immunogenic substances, and subsequent inflammatory processes. Recent research highlights the gut microbiota's significant role in the progression of alcohol-related liver disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!