A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Injectable thermogel incorporating reactive oxygen species scavenger and nitric oxide donor to accelerate the healing process of diabetic wounds. | LitMetric

Injectable thermogel incorporating reactive oxygen species scavenger and nitric oxide donor to accelerate the healing process of diabetic wounds.

Int J Pharm

Graduate University of Science and Technology, Vietnam Academy of Science and Technology, HCMC, Viet Nam; Institute of Applied Materials Science, Vietnam Academy of Science and Technology, HCMC, Viet Nam. Electronic address:

Published: December 2023

The healing of diabetic wounds is challenging due to redox imbalances. Herein, the thermogelling system AR-ACP hydrogel, with encapsulated biosafe nitric oxide (NO) donor L-arginine and resveratrol as an ROS scavenger, is established for sustainable wound therapy in the diabetic state. The innovated AR-ACP hydrogel dressings shows the sol-gel transition at 34 °C, allowing the hydrogel to fully cover wounds. The combination of L-arginine and resveratrol showed a prominent effect on anti-oxidative activity. The elimination of superoxide anions from the activated immune cells/oxidative cells by resveratrol maintained the NO-proangiogenic factors generated from L-arginine. Furthermore, the AR-ACP hydrogel endowed outstanding features such as haemocompatibility, non-skin irradiation as well as antibacterial activity. In the in vivo diabetic mice model, complete epidermal regeneration comparable to undamaged skin was observed with AR-ACP hydrogel. The synergy between L-arginine and resveratrol in the ACP hydrogel facilitated neovascularisation in the early stage, resulting in the higher balance in cellularity growth and collagen deposition in the dermal layer compared to control groups. Taken together, our findings demonstrate that the use of a customised ACP-based hydrogel, with the additional L-arginine and resveratrol, resulted in significant skin regeneration in the diabetic state.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2023.123576DOI Listing

Publication Analysis

Top Keywords

ar-acp hydrogel
16
l-arginine resveratrol
16
nitric oxide
8
oxide donor
8
diabetic wounds
8
diabetic state
8
hydrogel
7
diabetic
5
l-arginine
5
resveratrol
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!