Introduction: Generating high levels of immunosuppressive adenosine (ADO) in the tumor microenvironment contributes to cancer immune evasion. CD39 and CD73 hydrolyze adenosine triphosphate into ADO; thus, efforts have been made to target this pathway for cancer immunotherapy. Our objective was optimizing a multiplex immunofluorescence (mIF) panel to explore the role of CD39 and CD73 within the tumor microenvironment.

Materials And Methods: In three-time points, a small cohort (n = 8) of colorectal and pancreatic adenocarcinomas were automated staining using an mIF panel against CK, CD3, CD8, CD20, CD39, CD73, and CD68 to compare them with individual markers immunohistochemistry (IHC) for internal panel validation. Densities of immune cells and distances from different tumor-associated immune cells to tumor cells were exploratory assessment and compared with clinicopathologic variables and outcomes.

Results: Comparing the three-time points and individual IHC staining results, we demonstrated high reproducibility of the mIF panel. CD39 and CD73 expression was low in malignant cells; the exploratory analysis showed higher densities of CD39 expression by various cells, predominantly stromal cells, followed by T cells, macrophages, and B cells. No expression of CD73 by B cells or macrophages was detected. Distance analysis revealed proximity of cytotoxic T cells, macrophages, and T cells expressing CD39 to malignant cells, suggesting a close regulatory signal driven by this ADO marker.

Conclusions: We optimized an mIF panel for detection of markers in the ADO pathway, an emerging clinically relevant pathway. The densities and spatial distribution demonstrated that this pathway may modulate aspects of the tumor immune microenvironment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11524541PMC
http://dx.doi.org/10.1159/000534677DOI Listing

Publication Analysis

Top Keywords

cd39 cd73
16
mif panel
16
cells
12
cells macrophages
12
colorectal pancreatic
8
multiplex immunofluorescence
8
three-time points
8
immune cells
8
cells exploratory
8
malignant cells
8

Similar Publications

Signal transduction downstream of activating stimuli controls CD8+ T cell biology, however these external inputs can become uncoupled from transcriptional regulation in Primary Immune Regulatory Disorders (PIRDs). Gain-of-function (GOF) variants in STAT3 amplify cytokine signaling and cause a severe PIRD characterized by early onset autoimmunity, lymphoproliferation, recurrent infections, and immune dysregulation. In both primary human and mouse models of STAT3 GOF, CD8+ T cells have been implicated as pathogenic drivers of autoimmunity.

View Article and Find Full Text PDF

The adenosinergic pathway converting endogenous ATP to adenosine (ADO) is a major immunosuppressive pathway in cancer. Emerging data indicate that plasma small extracellular vesicles (sEV) express CD39 and CD73 and produce ADO. Using a noninvasive, highly sensitive newly developed assay, metabolism of N-etheno-labeled eATP, eADP or eAMP by ecto-nucleotidases on the external surface of sEV was measured using high pressure liquid chromatography with fluorescence detection.

View Article and Find Full Text PDF

Bacteria-based biohybrids for remodeling adenosine-mediated immunosuppression to boost radiotherapy-triggered antitumor immune response.

Biomaterials

December 2024

State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China. Electronic address:

Radiotherapy (RT) can trigger immunogenic cell death (ICD) in tumor cells and release adenosine triphosphate (ATP) to activate antitumor immunity. However, the formation of immunosuppressive adenosine (ADO) mediated by ectonucleotidases including CD39 and CD73, can exacerbate the immunosuppressive effects. Herein, a radiosensitizer-based metal-organic framework (MOF) composed of bismuth (Bi) and ellagic acid (EA) was synthesized in situ on the surface of Escherichia coli Nissle 1917 (EcN) to serve as a carrier for the CD39 inhibitor sodium polyoxotungstate (POM-1).

View Article and Find Full Text PDF

Purinergic signaling by TCRαβ double-negative T regulatory cells ameliorates liver ischemia-reperfusion injury.

Sci Bull (Beijing)

November 2024

Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China,; Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing 100069, China. Electronic address:

Hepatic ischemia-reperfusion injury (HIRI) is an important cause of liver injury following liver transplantation and major resections, and neutrophils are the key effector cells in HIRI. Double-negative T regulatory cells (DNT) are increasingly recognized as having critical regulatory functions in the immune system. Whether DNT expresses distinct immunoregulatory mechanisms to modulate neutrophils, as in HIRI, remains largely unknown.

View Article and Find Full Text PDF

This review examined the critical role of adenosine signaling in modulating the behavior of tumor-associated macrophages (TAMs), a key determinant of the tumor microenvironment (TME). Adenosine is an immunosuppressive metabolite that is highly enriched in the TME due to elevated expression of adenosine triphosphatase (ATPase). Adenosine influences polarization of TAMs through A2A and A2B receptors, which drives a phenotype that supports tumor progression and immune evasion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!