A high throughput microphysiological model of prosthetic valve endocarditis for investigating factors that influence bacterial adhesion under fluid shear stress.

Biochem Biophys Res Commun

Bioengineering Division, The Charles Stark Draper Laboratory, Inc., Cambridge, MA, United States. Electronic address:

Published: December 2023

Prosthetic heart valves are associated with almost one quarter of cases of infective endocarditis, a rare but serious condition with a staggering 25 % mortality rate. Without the endothelium of native valves, the risk of infection is exacerbated for implanted devices exposed to blood. There are currently no physiologically relevant in vitro or animal models of prosthetic valve endocarditis (PVE). Of particular importance, Staphylococcus aureus, a common agent of PVE, has demonstrated enhanced binding to blood plasma proteins (e.g., fibrinogen) and exposed matrix under fluid shear stress (FSS). An in vitro platform that mimics the multiple physiological determinants for S. aureus adhesion to prosthetic valve materials would facilitate the discovery of new treatments to minimize PVE. To this end, we developed a first-of-its-kind microphysiological model of PVE to study the effects of several key variables (endothelial cell coverage, fibrinogen deposition, surface treatments, and FSS) on S. aureus adhesion to bioprosthetic material surfaces. Our model demonstrated that viable endothelial monolayers diminished the deposition of fibrinogen and that fibrinogen was required for the subsequent adhesion of S. aureus to the bioprosthetic surface model. Next, we examined factors that affected endothelial cell coverage, such as FSS and glutaraldehyde, a common chemical treatment for bioprosthetic materials. In particular, glutaraldehyde treatment obstructed endothelialization of otherwise biocompatible collagen-coated surfaces, further enabling fibrinogen and S. aureus deposition. In future work, this model could impact multiple research areas, such as screening candidate bioprosthetic valve materials and new surface treatments to prevent PVE and further understanding host-pathogen interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2023.149155DOI Listing

Publication Analysis

Top Keywords

prosthetic valve
12
microphysiological model
8
valve endocarditis
8
fluid shear
8
shear stress
8
aureus adhesion
8
valve materials
8
endothelial cell
8
cell coverage
8
surface treatments
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!