Analytical scale purification of rare earth element (REE) radioisotopes is typically accomplished using cation-exchange resins (e.g. AG 50W-X8) and high-performance liquid chromatography (HPLC). Despite the variety of improvements made since the development of this separation process in the 1950s, nearest neighbor separations remain a challenge, as does the issue of irreversible sample adsorption. Herein, we report a study that evaluates the potential of high-speed counter-current chromatography (HSCCC) as an alternative method for purifying REE elements, with specific reference to separations of fission product REE of interest to nuclear forensics. Complementary HSCCC REE separation experiments, one spiked with radiotracer and REE fission product activity, allowed for in depth analysis of resulting fractions from both an elemental (inductively coupled plasma atomic emission spectroscopy, ICP-AES) and radiological (gamma-ray spectrometry, beta counting) purity perspective. The highly reproducible nature of separation profiles generated from HSCCC instruments was leveraged to simplify work-up of samples containing radioisotopes. Subsequent radioanalytical evaluation revealed minimal carryover of Eu into neighboring Sm and Tb fractions (as indicated by presence of Eu), and trace contamination of the Tb fraction with Y (as indicated by presence of Y). Subtle differences in stationary phase retention across the two columns were reflected in significant variations in decontamination factors of duplicate parallel separations. These differences paired with obtained distribution of radioisotopes provided valuable insights into future improvements. Collectively, this study represents a significant step forward in development of HSCCC technology for task specific REE radioisotope purification.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2023.464478DOI Listing

Publication Analysis

Top Keywords

rare earth
8
earth element
8
high-speed counter-current
8
counter-current chromatography
8
fission product
8
indicated presence
8
ree
6
separation
4
separation rare
4
radioisotopes
4

Similar Publications

Interface Modification by GaO Atomic Layers within Er-Doped GeO Nanofilms for Enhanced Electroluminescence and Operation Stability.

ACS Appl Mater Interfaces

January 2025

School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, Tianjin 300350, China.

For silicon-based devices using dielectric oxides doped with rare earth ions, their electroluminescence (EL) performance relies on the sufficient carrier injection. In this work, the atomic GaO layers are inserted within the Er-doped GeO nanofilms fabricated by atomic layer deposition (ALD). Both Ga(CH) and Ga(CH) could realize the ALD growth of GaO onto the as-deposited GeO nanofilm with unaffected deposition rates.

View Article and Find Full Text PDF

Continental drift triggered the Early Permian aridification of North China.

Nat Commun

January 2025

State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu, China.

The boundary between wet and arid climate zones in the Tethys Ocean remains challenging to trace, complicating our understanding of global aridification pattern during the Late Carboniferous to Early Permian transition. The North China Block (NCB), situated in the Tethys Ocean, underwent a transition from humid to arid climate during the Early Permian, providing a rare opportunity to trace this climate boundary across this region. Here, we present paleomagnetic evidence indicating that the NCB underwent rapid northward drift between 290 and 281 million years ago.

View Article and Find Full Text PDF

Transition from multi-year La Niña to strong El Niño rare but increased under global warming.

Sci Bull (Beijing)

December 2024

NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington DC 20005, USA.

El Niño-Southern Oscillation (ENSO) exhibits a strong asymmetry between warm El Niño and cold La Niña in amplitude and temporal evolution. An El Niño often leads to a heat discharge in the equatorial Pacific conducive to its rapid termination and transition to a La Niña, whereas a La Niña persists and recharges the equatorial Pacific for consecutive years preconditioning development of a subsequent El Niño, as occurred in 2020-2023. Whether the multiyear-long heat recharge increases the likelihood of a transition to a strong El Niño remains unknown.

View Article and Find Full Text PDF

Resonant pumping of the electronic f-f transitions in the orbital multiplet of dysprosium ions (Dy^{3+}) in a complex perovskite DyFeO_{3} is shown to impulsively launch THz lattice dynamics corresponding to the B_{2g} phonon mode, which is dominanted by the motion of Dy^{3+} ions. The findings, supported by symmetry analysis and density-functional theory calculations, not only provide a novel route for highly selective excitation of the rare-earth crystal lattices but also establish important relationships between the symmetry of the electronic and lattice excitations in complex oxides.

View Article and Find Full Text PDF

Structural and magnetic phase transitions in EuLaFe(BO) (x = 0, 0.18).

Acta Crystallogr B Struct Sci Cryst Eng Mater

February 2025

Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk 660036, Russian Federation.

The crystal structures and hyperfine magnetic parameters of EuFe(BO) and mixed EuLaFe(BO) were studied over a wide temperature range in order to analyze correlations of the structural and magnetic features and the phase transitions in multiferroic compounds of the rare-earth iron borate family. The chemical compositions of the crystals are reported from X-ray fluorescence analysis. The crystal structures of EuFe(BO) and EuLaFe(BO) were determined using single-crystal X-ray diffraction in the temperature range 25-500 K.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!