Heat shock proteins (HSPs) represent cellular chaperones that are classified into several families, including HSP27, HSP40, HSP60, HSP70, and HSP90. The role of HSPs in the cell includes the facilitation of protein folding and maintaining protein structure. Both processes play crucial roles during stress conditions in the cell such as heat shock, degradation, and hypoxia. Moreover, HSPs are important modulators of cellular proliferation and differentiation, and are strongly associated with the molecular orchestration of carcinogenesis. The expression and/or activity of HSPs in cancer cells is generally abnormally high and is associated with increased metastatic potential and activity of cancer stem cells, more pronounced angiogenesis, downregulated apoptosis, and the resistance to anticancer therapy in many patients. Based on the mentioned reasons, HSPs have strong potential as valid diagnostic, prognostic, and therapeutic biomarkers in clinical oncology. In addition, numerous papers describe the role of HSPs as chaperones in the regulation of immune responses inside and outside the cell. Importantly, highly expressed/activated HSPs may be inhibited via immunotherapeutic targets in various types of cancers. The aim of this work is to provide a comprehensive overview of the relationship between HSPs and the tumor cell with the intention of highlighting the potential use of HSPs in personalized cancer management.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.advms.2023.10.005DOI Listing

Publication Analysis

Top Keywords

heat shock
12
hsps
9
shock proteins
8
role hsps
8
cancer
5
proteins cancer
4
cancer rediscovered
4
rediscovered perspectives
4
perspectives cancer
4
cancer immunotherapy
4

Similar Publications

Diabetic cardiomyopathy (DCM) is a leading cause of death in diabetic patients. Current therapies do not adequately resolve this problem and focus only on the optimal level of blood glucose for patients. Ferroptosis plays an important role in diabetes mellitus and cardiovascular diseases.

View Article and Find Full Text PDF

With a high mortality rate, colon cancer (CC) is the third most common malignant tumor worldwide. The primary causes are thought to be the high invasiveness and migration of CC cells. The functions of Golgi phosphoprotein 3 (GOLPH3), stress-induced phosphoprotein 1 (STIP1), and the signal transducer and activator of transcription 3 (STAT3) signaling pathway in the invasion and migration of CC cells were examined in this study.

View Article and Find Full Text PDF

Long-term exposure to high ammonia concentrations could severely impact chicken health. On the other hand, luteolin has been shown to protect against ammonia poisoning. Although phosphorylation is critically involved in toxicity induction, the specific role of phosphorylated proteins in ammonia poisoning remains unclear.

View Article and Find Full Text PDF

Integrated analysis of biochemical, transcriptomic, and metabolomic response mechanisms in Ussuri catfish (Pseudobagrus ussuriensis) under acute heat stress.

Ecotoxicol Environ Saf

December 2024

College of Animal Science, Shanxi Agricultural University, Jinzhong 030800, China; Shanxi Key Laboratory of Animal Genetics Resource Utilization and Breeding, Jinzhong 030800, China. Electronic address:

Fish metabolism, growth, development, and physiological conditions are highly sensitive to fluctuations in water temperature. The Ussuri catfish (Pseudobagrus ussuriensis) is an important native economic species in China. However, research on heat stress in P.

View Article and Find Full Text PDF

Heat stress affects various components of photosynthetic machinery of which Rubisco activation inhibition due to heat sensitive Rubisco activase (RCA) is the most prominent. Detailed comparison of RCA coding genes identified a tandem duplication event in the grass family lineage where the duplicated genes showed very different evolutionary pattern. One of the two genes showed high level of sequence conservation whereas the second copy, although present only 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!