Chitosan derivatives are versatile materials, biocompatible and biodegradable, that can be tailor-made to suit specific biomedical applications. In this study, two N-heterocyclic salts (N,N'-diphenacyl-[4,4'-dipyridinium] dibromide (DP) and N,N'-diphenacyl-1,2-bis-(4-pyridinium)ethane dibromide (DPE)) were used for chitosan functionalization to enhance its antimicrobial potential. Physico-chemical characterization of the newly synthesized derivatives (Ch-DP and Ch-DPE) was performed by elemental analysis, spectrometry (UV-Vis, FTIR), electrochemistry (OCP, CV), and electron microscopy (SEM) proving that the highest degree of functionalization was obtained for Ch-DP. The antimicrobial effect of chitosan functionalization was further tested in terms of its interaction with Listeria monocytogenes Scott A, and Staphylococcus aureus ATCC 25923, as Gram-positive bacteria and Escherichia coli ATCC 25922, as Gram-negative bacterium, respectively, showing that the Ch-DP had a good inhibitory activity compared with Ch-DPE.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carres.2023.108964 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!