A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Phenomenological Estimate of Isospin Breaking in Hadronic Vacuum Polarization. | LitMetric

Puzzles in the determination of the hadronic-vacuum-polarization contribution currently impede a conclusive interpretation of the precision measurement of the anomalous magnetic moment of the muon at the Fermilab experiment. One such puzzle concerns tensions between evaluations in lattice QCD and using e^{+}e^{-}→hadrons cross-section data. In lattice QCD, the dominant isospin-symmetric part and isospin-breaking (IB) corrections are calculated separately, with very different systematic effects. Identifying these two pieces in a data-driven approach provides an opportunity to compare them individually and trace back the source of the discrepancy. Here, we estimate the IB component of the lattice-QCD calculations from phenomenology, based on a comprehensive study of exclusive contributions that can be enhanced via infrared singularities, threshold effects, or hadronic resonances, including, for the first time, in the e^{+}e^{-}→3π channel. We observe sizable cancellations among different channels, with a sum that even suggests a slightly larger result for the QED correction than obtained in lattice QCD. We conclude that the tensions between lattice QCD and e^{+}e^{-} data therefore cannot be explained by the IB contributions in the lattice-QCD calculations.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.131.161905DOI Listing

Publication Analysis

Top Keywords

lattice qcd
16
lattice-qcd calculations
8
phenomenological estimate
4
estimate isospin
4
isospin breaking
4
breaking hadronic
4
hadronic vacuum
4
vacuum polarization
4
polarization puzzles
4
puzzles determination
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!